Lemma 21.39.9. Let \mathcal{C}_ i, i = 1, 2 be categories. Let u_ i : \mathcal{C}_1 \times \mathcal{C}_2 \to \mathcal{C}_ i be the projection functors. Let B be a ring. Let g_ i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_1 \times \mathcal{C}_2), \underline{B}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ i), \underline{B}) be the corresponding morphisms of ringed topoi, see Example 21.39.3. For K_ i \in D(\mathcal{C}_ i, B) we have
L(\pi _1 \times \pi _2)_!( g_1^{-1}K_1 \otimes _{\underline{B}}^\mathbf {L} g_2^{-1}K_2) = L\pi _{1, !}(K_1) \otimes _ B^\mathbf {L} L\pi _{2, !}(K_2)
in D(B) with obvious notation.
Proof.
As both sides commute with colimits, it suffices to prove this for K_1 = j_{U!}\underline{B}_ U and K_2 = j_{V!}\underline{B}_ V for U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}_1) and V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}_2). See construction of L\pi _! in Lemma 21.37.2. In this case
g_1^{-1}K_1 \otimes _{\underline{B}}^\mathbf {L} g_2^{-1}K_2 = g_1^{-1}K_1 \otimes _{\underline{B}} g_2^{-1}K_2 = j_{(U, V)!}\underline{B}_{(U, V)}
Verification omitted. Hence the result follows as both the left and the right hand side of the formula of the lemma evaluate to B, see construction of L\pi _! in Lemma 21.37.2.
\square
Comments (0)
There are also: