Lemma 92.9.1. If $A \to B$ is a smooth ring map, then $L_{B/A} = \Omega _{B/A}[0]$.
92.9 Smooth ring maps
Let $C \to B$ be a surjection of rings with kernel $I$. Let us call such a ring map “weakly quasi-regular” if $I/I^2$ is a flat $B$-module and $\text{Tor}_*^ C(B, B)$ is the exterior algebra on $I/I^2$. The generalization to “smooth ring maps” of what is done in Lemma 92.8.4 for “étale ring maps” is to look at flat ring maps $A \to B$ such that the multiplication map $B \otimes _ A B \to B$ is weakly quasi-regular. For the moment we just stick to smooth ring maps.
Proof. We have the agreement in cohomological degree $0$ by Lemma 92.4.5. Thus it suffices to prove the other cohomology groups are zero. It suffices to prove this locally on $\mathop{\mathrm{Spec}}(B)$ as $L_{B_ g/A} = (L_{B/A})_ g$ for $g \in B$ by Lemma 92.8.5. Thus we may assume that $A \to B$ is standard smooth (Algebra, Lemma 10.137.10), i.e., that we can factor $A \to B$ as $A \to A[x_1, \ldots , x_ n] \to B$ with $A[x_1, \ldots , x_ n] \to B$ étale. In this case Lemmas 92.8.4 and Lemma 92.8.5 show that $L_{B/A} = L_{A[x_1, \ldots , x_ n]/A} \otimes B$ whence the conclusion by Lemma 92.4.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)