The Stacks project

Remark 91.11.1. Let $A \to B$ be a ring map. Working on $\mathcal{C}_{B/A}$ as in Section 91.4 let $\mathcal{J} \subset \mathcal{O}$ be the kernel of $\mathcal{O} \to \underline{B}$. Note that $L\pi _!(\mathcal{J}) = 0$ by Lemma 91.5.7. Set $\Omega = \Omega _{\mathcal{O}/A} \otimes _\mathcal {O} \underline{B}$ so that $L_{B/A} = L\pi _!(\Omega )$ by Lemma 91.4.3. It follows that $L\pi _!(\mathcal{J} \to \Omega ) = L\pi _!(\Omega ) = L_{B/A}$. Thus, for any object $U = (P \to B)$ of $\mathcal{C}_{B/A}$ we obtain a map
\begin{equation} \label{cotangent-equation-comparison-map-A} (J \to \Omega _{P/A} \otimes _ P B) \longrightarrow L_{B/A} \end{equation}

where $J = \mathop{\mathrm{Ker}}(P \to B)$ in $D(A)$, see Cohomology on Sites, Remark 21.39.4. Continuing in this manner, note that $L\pi _!(\mathcal{J} \otimes _\mathcal {O}^\mathbf {L} \underline{B}) = L\pi _!(\mathcal{J}) = 0$ by Lemma 91.5.6. Since $\text{Tor}_0^\mathcal {O}(\mathcal{J}, \underline{B}) = \mathcal{J}/\mathcal{J}^2$ the spectral sequence

\[ H_ p(\mathcal{C}_{B/A}, \text{Tor}_ q^\mathcal {O}(\mathcal{J}, \underline{B})) \Rightarrow H_{p + q}(\mathcal{C}_{B/A}, \mathcal{J} \otimes _\mathcal {O}^\mathbf {L} \underline{B}) = 0 \]

(dual of Derived Categories, Lemma 13.21.3) implies that $H_0(\mathcal{C}_{B/A}, \mathcal{J}/\mathcal{J}^2) = 0$ and $H_1(\mathcal{C}_{B/A}, \mathcal{J}/\mathcal{J}^2) = 0$. It follows that the complex of $\underline{B}$-modules $\mathcal{J}/\mathcal{J}^2 \to \Omega $ satisfies $\tau _{\geq -1}L\pi _!(\mathcal{J}/\mathcal{J}^2 \to \Omega ) = \tau _{\geq -1}L_{B/A}$. Thus, for any object $U = (P \to B)$ of $\mathcal{C}_{B/A}$ we obtain a map
\begin{equation} \label{cotangent-equation-comparison-map} (J/J^2 \to \Omega _{P/A} \otimes _ P B) \longrightarrow \tau _{\geq -1}L_{B/A} \end{equation}

in $D(B)$, see Cohomology on Sites, Remark 21.39.4.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08R7. Beware of the difference between the letter 'O' and the digit '0'.