Lemma 17.28.6. Let f : Y \to X be a continuous map of topological spaces. Let \varphi : \mathcal{O}_1 \to \mathcal{O}_2 be a homomorphism of sheaves of rings on X. Then there is a canonical identification f^{-1}\Omega _{\mathcal{O}_2/\mathcal{O}_1} = \Omega _{f^{-1}\mathcal{O}_2/f^{-1}\mathcal{O}_1} compatible with universal derivations.
Proof. This holds because the sheaf \Omega _{\mathcal{O}_2/\mathcal{O}_1} is the cokernel of the map (17.28.2.1) and a similar statement holds for \Omega _{f^{-1}\mathcal{O}_2/f^{-1}\mathcal{O}_1}, because the functor f^{-1} is exact, and because f^{-1}(\mathcal{O}_2[\mathcal{O}_2]) = f^{-1}\mathcal{O}_2[f^{-1}\mathcal{O}_2], f^{-1}(\mathcal{O}_2[\mathcal{O}_2 \times \mathcal{O}_2]) = f^{-1}\mathcal{O}_2[f^{-1}\mathcal{O}_2 \times f^{-1}\mathcal{O}_2], and f^{-1}(\mathcal{O}_2[\mathcal{O}_1]) = f^{-1}\mathcal{O}_2[f^{-1}\mathcal{O}_1]. \square
Comments (4)
Comment #2361 by Dominic Wynter on
Comment #2424 by Johan on
Comment #8563 by Elías Guisado on
Comment #9142 by Stacks project on
There are also: