Lemma 92.8.6. Let $A \to B$ be ring maps and $S \subset A$, $T \subset B$ multiplicative subsets such that $S$ maps into $T$. Then $L_{T^{-1}B/S^{-1}A} = L_{B/A} \otimes _ B T^{-1}B$ in $D(T^{-1}B)$.
Proof. Lemma 92.8.5 shows that $L_{T^{-1}B/A} = L_{B/A} \otimes _ B T^{-1}B$ and Lemma 92.8.1 shows that $L_{T^{-1}B/A} = L_{T^{-1}B/S^{-1}A}$. $\square$
Comments (0)