Lemma 91.8.7. Let $A \to B$ be a local ring homomorphism of local rings. Let $A^ h \to B^ h$, resp. $A^{sh} \to B^{sh}$ be the induced maps of henselizations, resp. strict henselizations. Then

in $D(B^ h)$, resp. $D(B^{sh})$.

Lemma 91.8.7. Let $A \to B$ be a local ring homomorphism of local rings. Let $A^ h \to B^ h$, resp. $A^{sh} \to B^{sh}$ be the induced maps of henselizations, resp. strict henselizations. Then

\[ L_{B^ h/A^ h} = L_{B^ h/A} = L_{B/A} \otimes _ B^\mathbf {L} B^ h \quad \text{resp.}\quad L_{B^{sh}/A^{sh}} = L_{B^{sh}/A} = L_{B/A} \otimes _ B^\mathbf {L} B^{sh} \]

in $D(B^ h)$, resp. $D(B^{sh})$.

**Proof.**
The complexes $L_{A^ h/A}$, $L_{A^{sh}/A}$, $L_{B^ h/B}$, and $L_{B^{sh}/B}$ are all zero by Lemma 91.8.4. Using the fundamental distinguished triangle (91.7.0.1) for $A \to B \to B^ h$ we obtain $L_{B^ h/A} = L_{B/A} \otimes _ B^\mathbf {L} B^ h$. Using the fundamental triangle for $A \to A^ h \to B^ h$ we obtain $L_{B^ h/A^ h} = L_{B^ h/A}$. Similarly for strict henselizations.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)