Remark 92.18.5. It is clear from the proof of Lemma 92.18.4 that for any U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) there is a canonical map L_{\mathcal{B}(U)/\mathcal{A}(U)} \to L_{\mathcal{B}/\mathcal{A}}(U) of complexes of \mathcal{B}(U)-modules. Moreover, these maps are compatible with restriction maps and the complex L_{\mathcal{B}/\mathcal{A}} is the sheafification of the rule U \mapsto L_{\mathcal{B}(U)/\mathcal{A}(U)}.
Comments (0)