## 90.18 The cotangent complex

In this section we discuss the cotangent complex of a map of sheaves of rings on a site. In later sections we specialize this to obtain the cotangent complex of a morphism of ringed topoi, a morphism of ringed spaces, a morphism of schemes, a morphism of algebraic space, etc.

Let $\mathcal{C}$ be a site and let $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ denote the associated topos. Let $\mathcal{A}$ denote a sheaf of rings on $\mathcal{C}$. Let $\mathcal{A}\textit{-Alg}$ be the category of $\mathcal{A}$-algebras. Consider the pair of adjoint functors $(U, V)$ where $V : \mathcal{A}\textit{-Alg} \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ is the forgetful functor and $U : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathcal{A}\textit{-Alg}$ assigns to a sheaf of sets $\mathcal{E}$ the polynomial algebra $\mathcal{A}[\mathcal{E}]$ on $\mathcal{E}$ over $\mathcal{A}$. Let $X_\bullet$ be the simplicial object of $\text{Fun}(\mathcal{A}\textit{-Alg}, \mathcal{A}\textit{-Alg})$ constructed in Simplicial, Section 14.34.

Now assume that $\mathcal{A} \to \mathcal{B}$ is a homomorphism of sheaves of rings. Then $\mathcal{B}$ is an object of the category $\mathcal{A}\textit{-Alg}$. Denote $\mathcal{P}_\bullet = X_\bullet (\mathcal{B})$ the resulting simplicial $\mathcal{A}$-algebra. Recall that $\mathcal{P}_0 = \mathcal{A}[\mathcal{B}]$, $\mathcal{P}_1 = \mathcal{A}[\mathcal{A}[\mathcal{B}]]$, and so on. Recall also that there is an augmentation

$\epsilon : \mathcal{P}_\bullet \longrightarrow \mathcal{B}$

where we view $\mathcal{B}$ as a constant simplicial $\mathcal{A}$-algebra.

Definition 90.18.1. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. The standard resolution of $\mathcal{B}$ over $\mathcal{A}$ is the augmentation $\epsilon : \mathcal{P}_\bullet \to \mathcal{B}$ with terms

$\mathcal{P}_0 = \mathcal{A}[\mathcal{B}],\quad \mathcal{P}_1 = \mathcal{A}[\mathcal{A}[\mathcal{B}]],\quad \ldots$

and maps as constructed above.

With this definition in hand the cotangent complex of a map of sheaves of rings is defined as follows. We will use the module of differentials as defined in Modules on Sites, Section 18.33.

Definition 90.18.2. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. The cotangent complex $L_{\mathcal{B}/\mathcal{A}}$ is the complex of $\mathcal{B}$-modules associated to the simplicial module

$\Omega _{\mathcal{P}_\bullet /\mathcal{A}} \otimes _{\mathcal{P}_\bullet , \epsilon } \mathcal{B}$

where $\epsilon : \mathcal{P}_\bullet \to \mathcal{B}$ is the standard resolution of $\mathcal{B}$ over $\mathcal{A}$. We usually think of $L_{\mathcal{B}/\mathcal{A}}$ as an object of $D(\mathcal{B})$.

These constructions satisfy a functoriality similar to that discussed in Section 90.6. Namely, given a commutative diagram

90.18.2.1
\begin{equation} \label{cotangent-equation-commutative-square-sheaves} \vcenter { \xymatrix{ \mathcal{B} \ar[r] & \mathcal{B}' \\ \mathcal{A} \ar[u] \ar[r] & \mathcal{A}' \ar[u] } } \end{equation}

of sheaves of rings on $\mathcal{C}$ there is a canonical $\mathcal{B}$-linear map of complexes

$L_{\mathcal{B}/\mathcal{A}} \longrightarrow L_{\mathcal{B}'/\mathcal{A}'}$

constructed as follows. If $\mathcal{P}_\bullet \to \mathcal{B}$ is the standard resolution of $\mathcal{B}$ over $\mathcal{A}$ and $\mathcal{P}'_\bullet \to \mathcal{B}'$ is the standard resolution of $\mathcal{B}'$ over $\mathcal{A}'$, then there is a canonical map $\mathcal{P}_\bullet \to \mathcal{P}'_\bullet$ of simplicial $\mathcal{A}$-algebras compatible with the augmentations $\mathcal{P}_\bullet \to \mathcal{B}$ and $\mathcal{P}'_\bullet \to \mathcal{B}'$. The maps

$\mathcal{P}_0 = \mathcal{A}[\mathcal{B}] \longrightarrow \mathcal{A}'[\mathcal{B}'] = \mathcal{P}'_0, \quad \mathcal{P}_1 = \mathcal{A}[\mathcal{A}[\mathcal{B}]] \longrightarrow \mathcal{A}'[\mathcal{A}'[\mathcal{B}']] = \mathcal{P}'_1$

and so on are given by the given maps $\mathcal{A} \to \mathcal{A}'$ and $\mathcal{B} \to \mathcal{B}'$. The desired map $L_{\mathcal{B}/\mathcal{A}} \to L_{\mathcal{B}'/\mathcal{A}'}$ then comes from the associated maps on sheaves of differentials.

Lemma 90.18.3. Let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ be a morphism of topoi. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. Then $f^{-1}L_{\mathcal{B}/\mathcal{A}} = L_{f^{-1}\mathcal{B}/f^{-1}\mathcal{A}}$.

Proof. The diagram

$\xymatrix{ \mathcal{A}\textit{-Alg} \ar[d]_{f^{-1}} \ar[r] & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar@<1ex>[l] \ar[d]^{f^{-1}} \\ f^{-1}\mathcal{A}\textit{-Alg} \ar[r] & \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \ar@<1ex>[l] }$

commutes. $\square$

Lemma 90.18.4. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. Then $H^ i(L_{\mathcal{B}/\mathcal{A}})$ is the sheaf associated to the presheaf $U \mapsto H^ i(L_{\mathcal{B}(U)/\mathcal{A}(U)})$.

Proof. Let $\mathcal{C}'$ be the site we get by endowing $\mathcal{C}$ with the chaotic topology (presheaves are sheaves). There is a morphism of topoi $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ where $f_*$ is the inclusion of sheaves into presheaves and $f^{-1}$ is sheafification. By Lemma 90.18.3 it suffices to prove the result for $\mathcal{C}'$, i.e., in case $\mathcal{C}$ has the chaotic topology.

If $\mathcal{C}$ carries the chaotic topology, then $L_{\mathcal{B}/\mathcal{A}}(U)$ is equal to $L_{\mathcal{B}(U)/\mathcal{A}(U)}$ because

$\xymatrix{ \mathcal{A}\textit{-Alg} \ar[d]_{\text{sections over }U} \ar[r] & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar@<1ex>[l] \ar[d]^{\text{sections over }U} \\ \mathcal{A}(U)\textit{-Alg} \ar[r] & \textit{Sets} \ar@<1ex>[l] }$

commutes. $\square$

Remark 90.18.5. It is clear from the proof of Lemma 90.18.4 that for any $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ there is a canonical map $L_{\mathcal{B}(U)/\mathcal{A}(U)} \to L_{\mathcal{B}/\mathcal{A}}(U)$ of complexes of $\mathcal{B}(U)$-modules. Moreover, these maps are compatible with restriction maps and the complex $L_{\mathcal{B}/\mathcal{A}}$ is the sheafification of the rule $U \mapsto L_{\mathcal{B}(U)/\mathcal{A}(U)}$.

Lemma 90.18.6. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. Then $H^0(L_{\mathcal{B}/\mathcal{A}}) = \Omega _{\mathcal{B}/\mathcal{A}}$.

Lemma 90.18.7. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ and $\mathcal{A} \to \mathcal{B}'$ be homomorphisms of sheaves of rings on $\mathcal{C}$. Then

$L_{\mathcal{B} \times \mathcal{B}'/\mathcal{A}} \longrightarrow L_{\mathcal{B}/\mathcal{A}} \oplus L_{\mathcal{B}'/\mathcal{A}}$

is an isomorphism in $D(\mathcal{B} \times \mathcal{B}')$.

Proof. By Lemma 90.18.4 it suffices to prove this for ring maps. In the case of rings this is Lemma 90.6.4. $\square$

The fundamental triangle for the cotangent complex of sheaves of rings is an easy consequence of the result for homomorphisms of rings.

Lemma 90.18.8. Let $\mathcal{D}$ be a site. Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ be homomorphisms of sheaves of rings on $\mathcal{D}$. There is a canonical distinguished triangle

$L_{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B}^\mathbf {L} \mathcal{C} \to L_{\mathcal{C}/\mathcal{A}} \to L_{\mathcal{C}/\mathcal{B}} \to L_{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B}^\mathbf {L} \mathcal{C}$

in $D(\mathcal{C})$.

Proof. We will use the method described in Remarks 90.7.5 and 90.7.6 to construct the triangle; we will freely use the results mentioned there. As in those remarks we first construct the triangle in case $\mathcal{B} \to \mathcal{C}$ is an injective map of sheaves of rings. In this case we set

1. $\mathcal{P}_\bullet$ is the standard resolution of $\mathcal{B}$ over $\mathcal{A}$,

2. $\mathcal{Q}_\bullet$ is the standard resolution of $\mathcal{C}$ over $\mathcal{A}$,

3. $\mathcal{R}_\bullet$ is the standard resolution of $\mathcal{C}$ over $\mathcal{B}$,

4. $\mathcal{S}_\bullet$ is the standard resolution of $\mathcal{B}$ over $\mathcal{B}$,

5. $\overline{\mathcal{Q}}_\bullet = \mathcal{Q}_\bullet \otimes _{\mathcal{P}_\bullet } \mathcal{B}$, and

6. $\overline{\mathcal{R}}_\bullet = \mathcal{R}_\bullet \otimes _{\mathcal{S}_\bullet } \mathcal{B}$.

The distinguished triangle is the distinguished triangle associated to the short exact sequence of simplicial $\mathcal{C}$-modules

$0 \to \Omega _{\mathcal{P}_\bullet /\mathcal{A}} \otimes _{\mathcal{P}_\bullet } \mathcal{C} \to \Omega _{\mathcal{Q}_\bullet /\mathcal{A}} \otimes _{\mathcal{Q}_\bullet } \mathcal{C} \to \Omega _{\overline{\mathcal{Q}}_\bullet /\mathcal{B}} \otimes _{\overline{\mathcal{Q}}_\bullet } \mathcal{C} \to 0$

The first two terms are equal to the first two terms of the triangle of the statement of the lemma. The identification of the last term with $L_{\mathcal{C}/\mathcal{B}}$ uses the quasi-isomorphisms of complexes

$L_{\mathcal{C}/\mathcal{B}} = \Omega _{\mathcal{R}_\bullet /\mathcal{B}} \otimes _{\mathcal{R}_\bullet } \mathcal{C} \longrightarrow \Omega _{\overline{\mathcal{R}}_\bullet /\mathcal{B}} \otimes _{\overline{\mathcal{R}}_\bullet } \mathcal{C} \longleftarrow \Omega _{\overline{\mathcal{Q}}_\bullet /\mathcal{B}} \otimes _{\overline{\mathcal{Q}}_\bullet } \mathcal{C}$

All the constructions used above can first be done on the level of presheaves and then sheafified. Hence to prove sequences are exact, or that map are quasi-isomorphisms it suffices to prove the corresponding statement for the ring maps $\mathcal{A}(U) \to \mathcal{B}(U) \to \mathcal{C}(U)$ which are known. This finishes the proof in the case that $\mathcal{B} \to \mathcal{C}$ is injective.

In general, we reduce to the case where $\mathcal{B} \to \mathcal{C}$ is injective by replacing $\mathcal{C}$ by $\mathcal{B} \times \mathcal{C}$ if necessary. This is possible by the argument given in Remark 90.7.5 by Lemma 90.18.7. $\square$

Lemma 90.18.9. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. If $p$ is a point of $\mathcal{C}$, then $(L_{\mathcal{B}/\mathcal{A}})_ p = L_{\mathcal{B}_ p/\mathcal{A}_ p}$.

Proof. This is a special case of Lemma 90.18.3. $\square$

For the construction of the naive cotangent complex and its properties we refer to Modules on Sites, Section 18.35.

Lemma 90.18.10. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. There is a canonical map $L_{\mathcal{B}/\mathcal{A}} \to \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}$ which identifies the naive cotangent complex with the truncation $\tau _{\geq -1}L_{\mathcal{B}/\mathcal{A}}$.

Proof. Let $\mathcal{P}_\bullet$ be the standard resolution of $\mathcal{B}$ over $\mathcal{A}$. Let $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{A}[\mathcal{B}] \to \mathcal{B})$. Recall that $\mathcal{P}_0 = \mathcal{A}[\mathcal{B}]$. The map of the lemma is given by the commutative diagram

$\xymatrix{ L_{\mathcal{B}/\mathcal{A}} \ar[d] & \ldots \ar[r] & \Omega _{\mathcal{P}_2/\mathcal{A}} \otimes _{\mathcal{P}_2} \mathcal{B} \ar[r] \ar[d] & \Omega _{\mathcal{P}_1/\mathcal{A}} \otimes _{\mathcal{P}_1} \mathcal{B} \ar[r] \ar[d] & \Omega _{\mathcal{P}_0/\mathcal{A}} \otimes _{\mathcal{P}_0} \mathcal{B} \ar[d] \\ \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} & \ldots \ar[r] & 0 \ar[r] & \mathcal{I}/\mathcal{I}^2 \ar[r] & \Omega _{\mathcal{P}_0/\mathcal{A}} \otimes _{\mathcal{P}_0} \mathcal{B} }$

We construct the downward arrow with target $\mathcal{I}/\mathcal{I}^2$ by sending a local section $\text{d}f \otimes b$ to the class of $(d_0(f) - d_1(f))b$ in $\mathcal{I}/\mathcal{I}^2$. Here $d_ i : \mathcal{P}_1 \to \mathcal{P}_0$, $i = 0, 1$ are the two face maps of the simplicial structure. This makes sense as $d_0 - d_1$ maps $\mathcal{P}_1$ into $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{P}_0 \to \mathcal{B})$. We omit the verification that this rule is well defined. Our map is compatible with the differential $\Omega _{\mathcal{P}_1/\mathcal{A}} \otimes _{\mathcal{P}_1} \mathcal{B} \to \Omega _{\mathcal{P}_0/\mathcal{A}} \otimes _{\mathcal{P}_0} \mathcal{B}$ as this differential maps a local section $\text{d}f \otimes b$ to $\text{d}(d_0(f) - d_1(f)) \otimes b$. Moreover, the differential $\Omega _{\mathcal{P}_2/\mathcal{A}} \otimes _{\mathcal{P}_2} \mathcal{B} \to \Omega _{\mathcal{P}_1/\mathcal{A}} \otimes _{\mathcal{P}_1} \mathcal{B}$ maps a local section $\text{d}f \otimes b$ to $\text{d}(d_0(f) - d_1(f) + d_2(f)) \otimes b$ which are annihilated by our downward arrow. Hence a map of complexes.

To see that our map induces an isomorphism on the cohomology sheaves $H^0$ and $H^{-1}$ we argue as follows. Let $\mathcal{C}'$ be the site with the same underlying category as $\mathcal{C}$ but endowed with the chaotic topology. Let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ be the morphism of topoi whose pullback functor is sheafification. Let $\mathcal{A}' \to \mathcal{B}'$ be the given map, but thought of as a map of sheaves of rings on $\mathcal{C}'$. The construction above gives a map $L_{\mathcal{B}'/\mathcal{A}'} \to \mathop{N\! L}\nolimits _{\mathcal{B}'/\mathcal{A}'}$ on $\mathcal{C}'$ whose value over any object $U$ of $\mathcal{C}'$ is just the map

$L_{\mathcal{B}(U)/\mathcal{A}(U)} \to \mathop{N\! L}\nolimits _{\mathcal{B}(U)/\mathcal{A}(U)}$

of Remark 90.11.4 which induces an isomorphism on $H^0$ and $H^{-1}$. Since $f^{-1}L_{\mathcal{B}'/\mathcal{A}'} = L_{\mathcal{B}/\mathcal{A}}$ (Lemma 90.18.3) and $f^{-1}\mathop{N\! L}\nolimits _{\mathcal{B}'/\mathcal{A}'} = \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}$ (Modules on Sites, Lemma 18.35.3) the lemma is proved. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08UQ. Beware of the difference between the letter 'O' and the digit '0'.