The Stacks project

92.19 The Atiyah class of a sheaf of modules

Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings. Let $\mathcal{F}$ be a sheaf of $\mathcal{B}$-modules. Let $\mathcal{P}_\bullet \to \mathcal{B}$ be the standard resolution of $\mathcal{B}$ over $\mathcal{A}$ (Section 92.18). For every $n \geq 0$ consider the extension of principal parts
\begin{equation} \label{cotangent-equation-atiyah-extension} 0 \to \Omega _{\mathcal{P}_ n/\mathcal{A}} \otimes _{\mathcal{P}_ n} \mathcal{F} \to \mathcal{P}^1_{\mathcal{P}_ n/\mathcal{A}}(\mathcal{F}) \to \mathcal{F} \to 0 \end{equation}

see Modules on Sites, Lemma 18.34.6. The functoriality of this construction (Modules on Sites, Remark 18.34.7) tells us ( is the degree $n$ part of a short exact sequence of simplicial $\mathcal{P}_\bullet $-modules (Cohomology on Sites, Section 21.41). Using the functor $L\pi _! : D(\mathcal{P}_\bullet ) \to D(\mathcal{B})$ of Cohomology on Sites, Remark 21.41.3 (here we use that $\mathcal{P}_\bullet \to \mathcal{A}$ is a resolution) we obtain a distinguished triangle
\begin{equation} \label{cotangent-equation-atiyah-general} L_{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B}^\mathbf {L} \mathcal{F} \to L\pi _!\left(\mathcal{P}^1_{\mathcal{P}_\bullet /\mathcal{A}}(\mathcal{F})\right) \to \mathcal{F} \to L_{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B}^\mathbf {L} \mathcal{F} [1] \end{equation}

in $D(\mathcal{B})$.

Definition 92.19.1. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings. Let $\mathcal{F}$ be a sheaf of $\mathcal{B}$-modules. The map $\mathcal{F} \to L_{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B}^\mathbf {L} \mathcal{F}[1]$ in ( is called the Atiyah class of $\mathcal{F}$.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09DF. Beware of the difference between the letter 'O' and the digit '0'.