Remark 21.41.3. Let \mathcal{C} be a site. Let \epsilon : \mathcal{A}_\bullet \to \mathcal{O} be an augmentation (Simplicial, Definition 14.20.1) in the category of sheaves of rings. Assume \epsilon induces a quasi-isomorphism s(\mathcal{A}_\bullet ) \to \mathcal{O}. In this case we obtain an exact functor of triangulated categories
Namely, for any object K of D(\mathcal{A}_\bullet ) we have L\pi _!(K) = L\pi _!(K \otimes _{\mathcal{A}_\bullet }^\mathbf {L} \mathcal{O}) by Lemma 21.41.2. Thus we can define the displayed functor as the composition of - \otimes ^\mathbf {L}_{\mathcal{A}_\bullet } \mathcal{O} with the functor L\pi _! : D(\Delta \times \mathcal{C}, \pi ^{-1}\mathcal{O}) \to D(\mathcal{O}) of Remark 21.38.6. In other words, we obtain a \mathcal{O}-module structure on L\pi _!(K) coming from the (canonical, functorial) identification of L\pi _!(K) with L\pi _!(K \otimes _{\mathcal{A}_\bullet }^\mathbf {L} \mathcal{O}) of the lemma.
Comments (0)