Lemma 91.18.7. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ and $\mathcal{A} \to \mathcal{B}'$ be homomorphisms of sheaves of rings on $\mathcal{C}$. Then

is an isomorphism in $D(\mathcal{B} \times \mathcal{B}')$.

Lemma 91.18.7. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ and $\mathcal{A} \to \mathcal{B}'$ be homomorphisms of sheaves of rings on $\mathcal{C}$. Then

\[ L_{\mathcal{B} \times \mathcal{B}'/\mathcal{A}} \longrightarrow L_{\mathcal{B}/\mathcal{A}} \oplus L_{\mathcal{B}'/\mathcal{A}} \]

is an isomorphism in $D(\mathcal{B} \times \mathcal{B}')$.

**Proof.**
By Lemma 91.18.4 it suffices to prove this for ring maps. In the case of rings this is Lemma 91.6.4.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)