Lemma 91.18.8. Let $\mathcal{D}$ be a site. Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ be homomorphisms of sheaves of rings on $\mathcal{D}$. There is a canonical distinguished triangle

in $D(\mathcal{C})$.

Lemma 91.18.8. Let $\mathcal{D}$ be a site. Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ be homomorphisms of sheaves of rings on $\mathcal{D}$. There is a canonical distinguished triangle

\[ L_{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B}^\mathbf {L} \mathcal{C} \to L_{\mathcal{C}/\mathcal{A}} \to L_{\mathcal{C}/\mathcal{B}} \to L_{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B}^\mathbf {L} \mathcal{C}[1] \]

in $D(\mathcal{C})$.

**Proof.**
We will use the method described in Remarks 91.7.5 and 91.7.6 to construct the triangle; we will freely use the results mentioned there. As in those remarks we first construct the triangle in case $\mathcal{B} \to \mathcal{C}$ is an injective map of sheaves of rings. In this case we set

$\mathcal{P}_\bullet $ is the standard resolution of $\mathcal{B}$ over $\mathcal{A}$,

$\mathcal{Q}_\bullet $ is the standard resolution of $\mathcal{C}$ over $\mathcal{A}$,

$\mathcal{R}_\bullet $ is the standard resolution of $\mathcal{C}$ over $\mathcal{B}$,

$\mathcal{S}_\bullet $ is the standard resolution of $\mathcal{B}$ over $\mathcal{B}$,

$\overline{\mathcal{Q}}_\bullet = \mathcal{Q}_\bullet \otimes _{\mathcal{P}_\bullet } \mathcal{B}$, and

$\overline{\mathcal{R}}_\bullet = \mathcal{R}_\bullet \otimes _{\mathcal{S}_\bullet } \mathcal{B}$.

The distinguished triangle is the distinguished triangle associated to the short exact sequence of simplicial $\mathcal{C}$-modules

\[ 0 \to \Omega _{\mathcal{P}_\bullet /\mathcal{A}} \otimes _{\mathcal{P}_\bullet } \mathcal{C} \to \Omega _{\mathcal{Q}_\bullet /\mathcal{A}} \otimes _{\mathcal{Q}_\bullet } \mathcal{C} \to \Omega _{\overline{\mathcal{Q}}_\bullet /\mathcal{B}} \otimes _{\overline{\mathcal{Q}}_\bullet } \mathcal{C} \to 0 \]

The first two terms are equal to the first two terms of the triangle of the statement of the lemma. The identification of the last term with $L_{\mathcal{C}/\mathcal{B}}$ uses the quasi-isomorphisms of complexes

\[ L_{\mathcal{C}/\mathcal{B}} = \Omega _{\mathcal{R}_\bullet /\mathcal{B}} \otimes _{\mathcal{R}_\bullet } \mathcal{C} \longrightarrow \Omega _{\overline{\mathcal{R}}_\bullet /\mathcal{B}} \otimes _{\overline{\mathcal{R}}_\bullet } \mathcal{C} \longleftarrow \Omega _{\overline{\mathcal{Q}}_\bullet /\mathcal{B}} \otimes _{\overline{\mathcal{Q}}_\bullet } \mathcal{C} \]

All the constructions used above can first be done on the level of presheaves and then sheafified. Hence to prove sequences are exact, or that map are quasi-isomorphisms it suffices to prove the corresponding statement for the ring maps $\mathcal{A}(U) \to \mathcal{B}(U) \to \mathcal{C}(U)$ which are known. This finishes the proof in the case that $\mathcal{B} \to \mathcal{C}$ is injective.

In general, we reduce to the case where $\mathcal{B} \to \mathcal{C}$ is injective by replacing $\mathcal{C}$ by $\mathcal{B} \times \mathcal{C}$ if necessary. This is possible by the argument given in Remark 91.7.5 by Lemma 91.18.7. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)