Definition 17.30.1. Let $X$ be a topological space. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings. The *naive cotangent complex* $\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}$ is the chain complex (17.30.0.2)

with $\mathcal{I}/\mathcal{I}^2$ placed in degree $-1$ and $\Omega _{\mathcal{A}[\mathcal{B}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{B}]} \mathcal{B}$ placed in degree $0$.

## Comments (0)