Lemma 90.12.5. In Situation 90.12.4 the modules $\pi ^*\mathcal{F}$ and $h^*\mathcal{F}'_2$ are $\mathcal{O}'_1$-modules flat over $\mathcal{O}_{\mathcal{B}'_1}$ restricting to $\mathcal{F}$ on $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$. Their difference (Lemma 90.12.1) is an element $\theta $ of $\mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(\mathcal{F}, f^*\mathcal{J}_1 \otimes _\mathcal {O} \mathcal{F})$ whose boundary in $\mathop{\mathrm{Ext}}\nolimits ^2_\mathcal {O}(\mathcal{F}, f^*\mathcal{J}_3 \otimes _\mathcal {O} \mathcal{F})$ equals the obstruction (Lemma 90.12.1) to lifting $\mathcal{F}$ to an $\mathcal{O}'_3$-module flat over $\mathcal{O}_{\mathcal{B}'_3}$.

**Proof.**
Note that both $\pi ^*\mathcal{F}$ and $h^*\mathcal{F}'_2$ restrict to $\mathcal{F}$ on $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ and that the kernels of $\pi ^*\mathcal{F} \to \mathcal{F}$ and $h^*\mathcal{F}'_2 \to \mathcal{F}$ are given by $f^*\mathcal{J}_1 \otimes _\mathcal {O} \mathcal{F}$. Hence flatness by Lemma 90.11.2. Taking the boundary makes sense as the sequence of modules

is short exact due to the assumptions in Situation 90.12.4 and the fact that $\mathcal{F}$ is flat over $\mathcal{O}_\mathcal {B}$. The statement on the obstruction class is a direct translation of the result of Remark 90.10.11 to this particular situation. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)