Remark 35.4.27. It would make things easier to have a faithfully flat ring homomorphism $g: R \to T$ for which $T \to S \otimes _ R T$ has some extra structure. For instance, if one could ensure that $T \to S \otimes _ R T$ is split in $\textit{Rings}$, then it would follow that every property of a module or algebra which is stable under base extension and which descends along faithfully flat morphisms also descends along universally injective morphisms. An obvious guess would be to find $g$ for which $T$ is not only faithfully flat but also injective in $\text{Mod}_ R$, but even for $R = \mathbf{Z}$ no such homomorphism can exist.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: