The Stacks project

Theorem 35.4.26. If $A \otimes _ R S$ has one of the following properties as an $S$-algebra

  1. of finite type;

  2. of finite presentation;

  3. formally unramified;

  4. unramified;

  5. étale;

then so does $A$ as an $R$-algebra (and of course conversely).

Proof. To prove (a), choose a finite set $\{ x_ i\} $ of generators of $A \otimes _ R S$ over $S$. Write each $x_ i$ as $\sum _ j y_{ij} \otimes s_{ij}$ with $y_{ij} \in A$ and $s_{ij} \in S$. Let $F$ be the polynomial $R$-algebra on variables $e_{ij}$ and let $F \to M$ be the $R$-algebra map sending $e_{ij}$ to $y_{ij}$. Then $F \otimes _ R S\to A \otimes _ R S$ is surjective, so $\mathop{\mathrm{Coker}}(F \to A) \otimes _ R S$ is zero and hence $\mathop{\mathrm{Coker}}(F \to A)$ is zero. This proves (a).

To see (b) assume $A \otimes _ R S$ is a finitely presented $S$-algebra. Then $A$ is finite type over $R$ by (a). Choose a surjection $R[x_1, \ldots , x_ n] \to A$ with kernel $I$. Then $I \otimes _ R S \to S[x_1, \ldots , x_ n] \to A \otimes _ R S \to 0$ is exact. By Algebra, Lemma 10.6.3 the kernel of $S[x_1, \ldots , x_ n] \to A \otimes _ R S$ is a finitely generated ideal. Thus we can find finitely many elements $y_1, \ldots , y_ t \in I$ such that the images of $y_ i \otimes 1$ in $S[x_1, \ldots , x_ n]$ generate the kernel of $S[x_1, \ldots , x_ n] \to A \otimes _ R S$. Let $I' \subset I$ be the ideal generated by $y_1, \ldots , y_ t$. Then $A' = R[x_1, \ldots , x_ n]/I'$ is a finitely presented $R$-algebra with a morphism $A' \to A$ such that $A' \otimes _ R S \to A \otimes _ R S$ is an isomorphism. Thus $A' \cong A$ as desired.

To prove (c), recall that $A$ is formally unramified over $R$ if and only if the module of relative differentials $\Omega _{A/R}$ vanishes, see Algebra, Lemma 10.148.2 or [Proposition 17.2.1, EGA4]. Since $\Omega _{(A \otimes _ R S)/S} = \Omega _{A/R} \otimes _ R S$, the vanishing descends by Theorem 35.4.22.

To deduce (d) from the previous cases, recall that $A$ is unramified over $R$ if and only if $A$ is formally unramified and of finite type over $R$, see Algebra, Lemma 10.151.2.

To prove (e), recall that by Algebra, Lemma 10.151.8 or [Théorème 17.6.1, EGA4] the algebra $A$ is étale over $R$ if and only if $A$ is flat, unramified, and of finite presentation over $R$. $\square$

Comments (0)

There are also:

  • 4 comment(s) on Section 35.4: Descent for universally injective morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08XE. Beware of the difference between the letter 'O' and the digit '0'.