Theorem 35.4.25. If $M \otimes _ R S$ has one of the following properties as an $S$-module
finitely generated;
finitely presented;
flat;
faithfully flat;
finite projective;
then so does $M$ as an $R$-module (and conversely).
Theorem 35.4.25. If $M \otimes _ R S$ has one of the following properties as an $S$-module
finitely generated;
finitely presented;
flat;
faithfully flat;
finite projective;
then so does $M$ as an $R$-module (and conversely).
Proof. To prove (a), choose a finite set $\{ n_ i\} $ of generators of $M \otimes _ R S$ in $\text{Mod}_ S$. Write each $n_ i$ as $\sum _ j m_{ij} \otimes s_{ij}$ with $m_{ij} \in M$ and $s_{ij} \in S$. Let $F$ be the finite free $R$-module with basis $e_{ij}$ and let $F \to M$ be the $R$-module map sending $e_{ij}$ to $m_{ij}$. Then $F \otimes _ R S\to M \otimes _ R S$ is surjective, so $\mathop{\mathrm{Coker}}(F \to M) \otimes _ R S$ is zero and hence $\mathop{\mathrm{Coker}}(F \to M)$ is zero. This proves (a).
To see (b) assume $M \otimes _ R S$ is finitely presented. Then $M$ is finitely generated by (a). Choose a surjection $R^{\oplus n} \to M$ with kernel $K$. Then $K \otimes _ R S \to S^{\oplus r} \to M \otimes _ R S \to 0$ is exact. By Algebra, Lemma 10.5.3 the kernel of $S^{\oplus r} \to M \otimes _ R S$ is a finite $S$-module. Thus we can find finitely many elements $k_1, \ldots , k_ t \in K$ such that the images of $k_ i \otimes 1$ in $S^{\oplus r}$ generate the kernel of $S^{\oplus r} \to M \otimes _ R S$. Let $K' \subset K$ be the submodule generated by $k_1, \ldots , k_ t$. Then $M' = R^{\oplus r}/K'$ is a finitely presented $R$-module with a morphism $M' \to M$ such that $M' \otimes _ R S \to M \otimes _ R S$ is an isomorphism. Thus $M' \cong M$ as desired.
To prove (c), let $0 \to M' \to M'' \to M \to 0$ be a short exact sequence in $\text{Mod}_ R$. Since $\bullet \otimes _ R S$ is a right exact functor, $M'' \otimes _ R S \to M \otimes _ R S$ is surjective. So by Lemma 35.4.10 the map $C(M \otimes _ R S) \to C(M'' \otimes _ R S)$ is injective. If $M \otimes _ R S$ is flat, then Lemma 35.4.24 shows $C(M \otimes _ R S)$ is an injective object of $\text{Mod}_ S$, so the injection $C(M \otimes _ R S) \to C(M'' \otimes _ R S)$ is split in $\text{Mod}_ S$ and hence also in $\text{Mod}_ R$. Since $C(M \otimes _ R S) \to C(M)$ is a split surjection by Lemma 35.4.12, it follows that $C(M) \to C(M'')$ is a split injection in $\text{Mod}_ R$. That is, the sequence
is split exact. For $N \in \text{Mod}_ R$, by (35.4.11.1) we see that
is split exact. By Lemma 35.4.10,
is exact. This implies $M$ is flat over $R$. Namely, taking $M'$ a free module surjecting onto $M$ we conclude that $\text{Tor}_1^ R(M, N) = 0$ for all modules $N$ and we can use Algebra, Lemma 10.75.8. This proves (c).
To deduce (d) from (c), note that if $N \in \text{Mod}_ R$ and $M \otimes _ R N$ is zero, then $M \otimes _ R S \otimes _ S (N \otimes _ R S) \cong (M \otimes _ R N) \otimes _ R S$ is zero, so $N \otimes _ R S$ is zero and hence $N$ is zero.
To deduce (e) at this point, it suffices to recall that $M$ is finitely generated and projective if and only if it is finitely presented and flat. See Algebra, Lemma 10.78.2. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: