Lemma 47.4.3. Let $(R, \mathfrak m, \kappa )$ be a local ring. Any finite $R$-module has a projective cover.

**Proof.**
Let $M$ be a finite $R$-module. Let $r = \dim _\kappa (M/\mathfrak m M)$. Choose $x_1, \ldots , x_ r \in M$ mapping to a basis of $M/\mathfrak m M$. Consider the map $f : R^{\oplus r} \to M$. By Nakayama's lemma this is a surjection (Algebra, Lemma 10.20.1). If $N \subset R^{\oplus r}$ is a proper submodule, then $N/\mathfrak m N \to \kappa ^{\oplus r}$ is not surjective (by Nakayama's lemma again) hence $N/\mathfrak m N \to M/\mathfrak m M$ is not surjective. Thus $f$ is an essential surjection.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: