Lemma 47.5.8. Let $R$ be a Noetherian ring. Let $E$ be an indecomposable injective $R$-module. Then there exists a prime ideal $\mathfrak p$ of $R$ such that $E$ is the injective hull of $\kappa (\mathfrak p)$.

**Proof.**
Let $\mathfrak p$ be the prime ideal found in Lemma 47.5.6. Say $\mathfrak p = (f_1, \ldots , f_ r)$. Pick a nonzero element $x \in \bigcap \mathop{\mathrm{Ker}}(f_ i : E \to E)$, see Lemma 47.5.6. Then $(R_\mathfrak p)x$ is a module isomorphic to $\kappa (\mathfrak p)$ inside $E$. We conclude by Lemma 47.5.6.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: