Lemma 10.14.5. Let R \to S be a ring map. Given S-modules M, N and an R-module P we have
\mathop{\mathrm{Hom}}\nolimits _ R(M \otimes _ S N, P) = \mathop{\mathrm{Hom}}\nolimits _ S(M, \mathop{\mathrm{Hom}}\nolimits _ R(N, P))
Lemma 10.14.5. Let R \to S be a ring map. Given S-modules M, N and an R-module P we have
Proof. This can be proved directly, but it is also a consequence of Lemmas 10.14.4 and 10.12.8. Namely, we have
as desired. \square
Comments (0)