Definition 10.14.1. Let $\varphi : R \to S$ be a ring map. Let $M$ be an $S$-module. Let $R \to R'$ be any ring map. The base change of $\varphi $ by $R \to R'$ is the ring map $R' \to S \otimes _ R R'$. In this situation we often write $S' = S \otimes _ R R'$. The base change of the $S$-module $M$ is the $S'$-module $M \otimes _ R R'$.
10.14 Base change
We formally introduce base change in algebra as follows.
If $S = R[x_ i]/(f_ j)$ for some collection of variables $x_ i$, $i \in I$ and some collection of polynomials $f_ j \in R[x_ i]$, $j \in J$, then $S \otimes _ R R' = R'[x_ i]/(f'_ j)$, where $f'_ j \in R'[x_ i]$ is the image of $f_ j$ under the map $R[x_ i] \to R'[x_ i]$ induced by $R \to R'$. This simple remark is the key to understanding base change.
Lemma 10.14.2. Let $R \to S$ be a ring map. Let $M$ be an $S$-module. Let $R \to R'$ be a ring map and let $S' = S \otimes _ R R'$ and $M' = M \otimes _ R R'$ be the base changes.
If $M$ is a finite $S$-module, then the base change $M'$ is a finite $S'$-module.
If $M$ is an $S$-module of finite presentation, then the base change $M'$ is an $S'$-module of finite presentation.
If $R \to S$ is of finite type, then the base change $R' \to S'$ is of finite type.
If $R \to S$ is of finite presentation, then the base change $R' \to S'$ is of finite presentation.
Proof. Proof of (1). Take a surjective, $S$-linear map $S^{\oplus n} \to M \to 0$. By Lemma 10.12.3 and 10.12.10 the result after tensoring with $R^\prime $ is a surjection ${S^\prime }^{\oplus n} \to M^\prime \rightarrow 0$, so $M^\prime $ is a finitely generated $S^\prime $-module. Proof of (2). Take a presentation $S^{\oplus m} \to S^{\oplus n} \to M \to 0$. By Lemma 10.12.3 and 10.12.10 the result after tensoring with $R^\prime $ gives a finite presentation ${S^\prime }^{\oplus m} \to {S^\prime }^{\oplus n} \to M^\prime \to 0$, of the $S^\prime $-module $M^\prime $. Proof of (3). This follows by the remark preceding the lemma as we can take $I$ to be finite by assumption. Proof of (4). This follows by the remark preceding the lemma as we can take $I$ and $J$ to be finite by assumption. $\square$
Let $\varphi : R \to S$ be a ring map. Given an $S$-module $N$ we obtain an $R$-module $N_ R$ by the rule $r \cdot n = \varphi (r)n$. This is sometimes called the restriction of $N$ to $R$.
Lemma 10.14.3. Let $R \to S$ be a ring map. The functors $\text{Mod}_ S \to \text{Mod}_ R$, $N \mapsto N_ R$ (restriction) and $\text{Mod}_ R \to \text{Mod}_ S$, $M \mapsto M \otimes _ R S$ (base change) are adjoint functors. In a formula
Proof. If $\alpha : M \to N_ R$ is an $R$-module map, then we define $\alpha ' : M \otimes _ R S \to N$ by the rule $\alpha '(m \otimes s) = s\alpha (m)$. If $\beta : M \otimes _ R S \to N$ is an $S$-module map, we define $\beta ' : M \to N_ R$ by the rule $\beta '(m) = \beta (m \otimes 1)$. We omit the verification that these constructions are mutually inverse. $\square$
The lemma above tells us that restriction has a left adjoint, namely base change. It also has a right adjoint.
Lemma 10.14.4. Let $R \to S$ be a ring map. The functors $\text{Mod}_ S \to \text{Mod}_ R$, $N \mapsto N_ R$ (restriction) and $\text{Mod}_ R \to \text{Mod}_ S$, $M \mapsto \mathop{\mathrm{Hom}}\nolimits _ R(S, M)$ are adjoint functors. In a formula
Proof. If $\alpha : N_ R \to M$ is an $R$-module map, then we define $\alpha ' : N \to \mathop{\mathrm{Hom}}\nolimits _ R(S, M)$ by the rule $\alpha '(n) = (s \mapsto \alpha (sn))$. If $\beta : N \to \mathop{\mathrm{Hom}}\nolimits _ R(S, M)$ is an $S$-module map, we define $\beta ' : N_ R \to M$ by the rule $\beta '(n) = \beta (n)(1)$. We omit the verification that these constructions are mutually inverse. $\square$
Lemma 10.14.5. Let $R \to S$ be a ring map. Given $S$-modules $M, N$ and an $R$-module $P$ we have
Proof. This can be proved directly, but it is also a consequence of Lemmas 10.14.4 and 10.12.8. Namely, we have
as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)