The Stacks project

10.12 Tensor algebra

Let $R$ be a ring. Let $M$ be an $R$-module. We define the tensor algebra of $M$ over $R$ to be the noncommutative $R$-algebra

\[ \text{T}(M) = \text{T}_ R(M) = \bigoplus \nolimits _{n \geq 0} \text{T}^ n(M) \]

with $\text{T}^0(M) = R$, $\text{T}^1(M) = M$, $\text{T}^2(M) = M \otimes _ R M$, $\text{T}^3(M) = M \otimes _ R M \otimes _ R M$, and so on. Multiplication is defined by the rule that on pure tensors we have

\[ (x_1 \otimes x_2 \otimes \ldots \otimes x_ n) \cdot (y_1 \otimes y_2 \otimes \ldots \otimes y_ m) = x_1 \otimes x_2 \otimes \ldots \otimes x_ n \otimes y_1 \otimes y_2 \otimes \ldots \otimes y_ m \]

and we extend this by linearity.

We define the exterior algebra $\wedge (M)$ of $M$ over $R$ to be the quotient of $\text{T}(M)$ by the two sided ideal generated by the elements $x \otimes x \in \text{T}^2(M)$. The image of a pure tensor $x_1 \otimes \ldots \otimes x_ n$ in $\wedge ^ n(M)$ is denoted $x_1 \wedge \ldots \wedge x_ n$. These elements generate $\wedge ^ n(M)$, they are $R$-linear in each $x_ i$ and they are zero when two of the $x_ i$ are equal (i.e., they are alternating as functions of $x_1, x_2, \ldots , x_ n$). The multiplication on $\wedge (M)$ is graded commutative, i.e., every $x \in M$ and $y \in M$ satisfy $x \wedge y = - y \wedge x$.

An example of this is when $M = Rx_1 \oplus \ldots \oplus Rx_ n$ is a finite free module. In this case $\wedge (M)$ is free over $R$ with basis the elements

\[ x_{i_1} \wedge \ldots \wedge x_{i_ r} \]

with $0 \leq r \leq n$ and $1 \leq i_1 < i_2 < \ldots < i_ r \leq n$.

We define the symmetric algebra $\text{Sym}(M)$ of $M$ over $R$ to be the quotient of $\text{T}(M)$ by the two sided ideal generated by the elements $x \otimes y - y \otimes x \in \text{T}^2(M)$. The image of a pure tensor $x_1 \otimes \ldots \otimes x_ n$ in $\text{Sym}^ n(M)$ is denoted just $x_1 \ldots x_ n$. These elements generate $\text{Sym}^ n(M)$, these are $R$-linear in each $x_ i$ and $x_1 \ldots x_ n = x_1' \ldots x_ n'$ if the sequence of elements $x_1, \ldots , x_ n$ is a permutation of the sequence $x_1', \ldots , x_ n'$. Thus we see that $\text{Sym}(M)$ is commutative.

An example of this is when $M = Rx_1 \oplus \ldots \oplus Rx_ n$ is a finite free module. In this case $\text{Sym}(M) = R[x_1, \ldots , x_ n]$ is a polynomial algebra.

Lemma 10.12.1. Let $R$ be a ring. Let $M$ be an $R$-module. If $M$ is a free $R$-module, so is each symmetric and exterior power.

Proof. Omitted, but see above for the finite free case. $\square$

Lemma 10.12.2. Let $R$ be a ring. Let $M_2 \to M_1 \to M \to 0$ be an exact sequence of $R$-modules. There are exact sequences

\[ M_2 \otimes _ R \text{Sym}^{n - 1}(M_1) \to \text{Sym}^ n(M_1) \to \text{Sym}^ n(M) \to 0 \]

and similarly

\[ M_2 \otimes _ R \wedge ^{n - 1}(M_1) \to \wedge ^ n(M_1) \to \wedge ^ n(M) \to 0 \]

Proof. Omitted. $\square$

Lemma 10.12.3. Let $R$ be a ring. Let $M$ be an $R$-module. Let $x_ i$, $i \in I$ be a given system of generators of $M$ as an $R$-module. Let $n \geq 2$. There exists a canonical exact sequence

\[ \bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i_1, i_2 \in I} \text{T}^{n - 2}(M) \oplus \bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i \in I} \text{T}^{n - 2}(M) \to \text{T}^ n(M) \to \wedge ^ n(M) \to 0 \]

where the pure tensor $m_1 \otimes \ldots \otimes m_{n - 2}$ in the first summand maps to

\begin{align*} \underbrace{ m_1 \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_1} \text{ and } x_{i_2} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \\ + \underbrace{ m_1 \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_2} \text{ and } x_{i_1} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \end{align*}

and $m_1 \otimes \ldots \otimes m_{n - 2}$ in the second summand maps to

\[ \underbrace{ m_1 \otimes \ldots \otimes x_ i \otimes \ldots \otimes x_ i \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i} \text{ and } x_{i} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \]

There is also a canonical exact sequence

\[ \bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i_1, i_2 \in I} \text{T}^{n - 2}(M) \to \text{T}^ n(M) \to \text{Sym}^ n(M) \to 0 \]

where the pure tensor $m_1 \otimes \ldots \otimes m_{n - 2}$ maps to

\begin{align*} \underbrace{ m_1 \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_1} \text{ and } x_{i_2} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \\ - \underbrace{ m_1 \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_2} \text{ and } x_{i_1} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \end{align*}

Proof. Omitted. $\square$

slogan

Lemma 10.12.4. Let $R$ be a ring. Let $M_ i$ be a directed system of $R$-modules. Then $\mathop{\mathrm{colim}}\nolimits _ i \text{T}(M) = \text{T}(\mathop{\mathrm{colim}}\nolimits _ i M_ i)$ and similarly for the symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma 10.11.9. $\square$

Lemma 10.12.5. Let $R$ be a ring and let $S \subset R$ be a multiplicative subset. Then $S^{-1}T_ R(M) = T_{S^{-1}R}(S^{-1}M)$ for any $R$-module $M$. Similar for symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma 10.11.16. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00DM. Beware of the difference between the letter 'O' and the digit '0'.