Processing math: 100%

The Stacks project

10.13 Tensor algebra

Let R be a ring. Let M be an R-module. We define the tensor algebra of M over R to be the noncommutative R-algebra

\text{T}(M) = \text{T}_ R(M) = \bigoplus \nolimits _{n \geq 0} \text{T}^ n(M)

with \text{T}^0(M) = R, \text{T}^1(M) = M, \text{T}^2(M) = M \otimes _ R M, \text{T}^3(M) = M \otimes _ R M \otimes _ R M, and so on. Multiplication is defined by the rule that on pure tensors we have

(x_1 \otimes x_2 \otimes \ldots \otimes x_ n) \cdot (y_1 \otimes y_2 \otimes \ldots \otimes y_ m) = x_1 \otimes x_2 \otimes \ldots \otimes x_ n \otimes y_1 \otimes y_2 \otimes \ldots \otimes y_ m

and we extend this by linearity.

We define the exterior algebra \wedge (M) of M over R to be the quotient of \text{T}(M) by the two sided ideal generated by the elements x \otimes x \in \text{T}^2(M). The image of a pure tensor x_1 \otimes \ldots \otimes x_ n in \wedge ^ n(M) is denoted x_1 \wedge \ldots \wedge x_ n. These elements generate \wedge ^ n(M), they are R-linear in each x_ i and they are zero when two of the x_ i are equal (i.e., they are alternating as functions of x_1, x_2, \ldots , x_ n). The multiplication on \wedge (M) is graded commutative, i.e., every x \in M and y \in M satisfy x \wedge y = - y \wedge x.

An example of this is when M = Rx_1 \oplus \ldots \oplus Rx_ n is a finite free module. In this case \wedge (M) is free over R with basis the elements

x_{i_1} \wedge \ldots \wedge x_{i_ r}

with 0 \leq r \leq n and 1 \leq i_1 < i_2 < \ldots < i_ r \leq n.

We define the symmetric algebra \text{Sym}(M) of M over R to be the quotient of \text{T}(M) by the two sided ideal generated by the elements x \otimes y - y \otimes x \in \text{T}^2(M). The image of a pure tensor x_1 \otimes \ldots \otimes x_ n in \text{Sym}^ n(M) is denoted just x_1 \ldots x_ n. These elements generate \text{Sym}^ n(M), these are R-linear in each x_ i and x_1 \ldots x_ n = x_1' \ldots x_ n' if the sequence of elements x_1, \ldots , x_ n is a permutation of the sequence x_1', \ldots , x_ n'. Thus we see that \text{Sym}(M) is commutative.

An example of this is when M = Rx_1 \oplus \ldots \oplus Rx_ n is a finite free module. In this case \text{Sym}(M) = R[x_1, \ldots , x_ n] is a polynomial algebra.

Lemma 10.13.1. Let R be a ring. Let M be an R-module. If M is a free R-module, so is each symmetric and exterior power.

Proof. Omitted, but see above for the finite free case. \square

Lemma 10.13.2. Let R be a ring. Let M_2 \to M_1 \to M \to 0 be an exact sequence of R-modules. There are exact sequences

M_2 \otimes _ R \text{Sym}^{n - 1}(M_1) \to \text{Sym}^ n(M_1) \to \text{Sym}^ n(M) \to 0

and similarly

M_2 \otimes _ R \wedge ^{n - 1}(M_1) \to \wedge ^ n(M_1) \to \wedge ^ n(M) \to 0

Proof. Omitted. \square

Lemma 10.13.3. Let R be a ring. Let M be an R-module. Let x_ i, i \in I be a given system of generators of M as an R-module. Let n \geq 2. There exists a canonical exact sequence

\bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i_1, i_2 \in I} \text{T}^{n - 2}(M) \oplus \bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i \in I} \text{T}^{n - 2}(M) \to \text{T}^ n(M) \to \wedge ^ n(M) \to 0

where the pure tensor m_1 \otimes \ldots \otimes m_{n - 2} in the first summand maps to

\begin{align*} \underbrace{ m_1 \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_1} \text{ and } x_{i_2} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \\ + \underbrace{ m_1 \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_2} \text{ and } x_{i_1} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \end{align*}

and m_1 \otimes \ldots \otimes m_{n - 2} in the second summand maps to

\underbrace{ m_1 \otimes \ldots \otimes x_ i \otimes \ldots \otimes x_ i \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i} \text{ and } x_{i} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}}

There is also a canonical exact sequence

\bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i_1, i_2 \in I} \text{T}^{n - 2}(M) \to \text{T}^ n(M) \to \text{Sym}^ n(M) \to 0

where the pure tensor m_1 \otimes \ldots \otimes m_{n - 2} maps to

\begin{align*} \underbrace{ m_1 \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_1} \text{ and } x_{i_2} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \\ - \underbrace{ m_1 \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_2} \text{ and } x_{i_1} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \end{align*}

Proof. Omitted. \square

Lemma 10.13.4. Let A \to B be a ring map. Let M be a B-module. Let n > 1. The kernel of the A-linear map M \otimes _ A \ldots \otimes _ A M \to \wedge ^ n_ B(M) is generated as an A-module by the elements m_1 \otimes \ldots \otimes m_ n with m_ i = m_ j for i \not= j, m_1, \ldots , m_ n \in M and the elements m_1 \otimes \ldots \otimes bm_ i \otimes \ldots \otimes m_ n - m_1 \otimes \ldots \otimes bm_ j \otimes \ldots \otimes m_ n for i \not= j, m_1, \ldots , m_ n \in M, and b \in B.

Proof. Omitted. \square

Lemma 10.13.5.slogan Let R be a ring. Let M_ i be a directed system of R-modules. Then \mathop{\mathrm{colim}}\nolimits _ i \text{T}(M_ i) = \text{T}(\mathop{\mathrm{colim}}\nolimits _ i M_ i) and similarly for the symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma 10.12.9. \square

Lemma 10.13.6. Let R be a ring and let S \subset R be a multiplicative subset. Then S^{-1}T_ R(M) = T_{S^{-1}R}(S^{-1}M) for any R-module M. Similar for symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma 10.12.16. \square


Comments (2)

Comment #4964 by Hao on

Perhaps in the Lemma 10.12.4 the LHS should be instead of .


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.