Lemma 10.13.5. Let $R$ be a ring. Let $M_ i$ be a directed system of $R$-modules. Then $\mathop{\mathrm{colim}}\nolimits _ i \text{T}(M_ i) = \text{T}(\mathop{\mathrm{colim}}\nolimits _ i M_ i)$ and similarly for the symmetric and exterior algebras.
Taking tensor algebras commutes with filtered colimits.
Proof. Omitted. Hint: Apply Lemma 10.12.9. $\square$
Comments (1)
Comment #828 by Johan Commelin on
There are also: