Lemma 10.13.2. Let $R$ be a ring. Let $M_2 \to M_1 \to M \to 0$ be an exact sequence of $R$-modules. There are exact sequences

\[ M_2 \otimes _ R \text{Sym}^{n - 1}(M_1) \to \text{Sym}^ n(M_1) \to \text{Sym}^ n(M) \to 0 \]

and similarly

\[ M_2 \otimes _ R \wedge ^{n - 1}(M_1) \to \wedge ^ n(M_1) \to \wedge ^ n(M) \to 0 \]

## Comments (0)

There are also: