Lemma 10.13.1. Let $R$ be a ring. Let $M$ be an $R$-module. If $M$ is a free $R$-module, so is each symmetric and exterior power.
Proof. Omitted, but see above for the finite free case. $\square$
Lemma 10.13.1. Let $R$ be a ring. Let $M$ be an $R$-module. If $M$ is a free $R$-module, so is each symmetric and exterior power.
Proof. Omitted, but see above for the finite free case. $\square$
Comments (0)
There are also: