Processing math: 100%

The Stacks project

Lemma 10.13.3. Let R be a ring. Let M be an R-module. Let x_ i, i \in I be a given system of generators of M as an R-module. Let n \geq 2. There exists a canonical exact sequence

\bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i_1, i_2 \in I} \text{T}^{n - 2}(M) \oplus \bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i \in I} \text{T}^{n - 2}(M) \to \text{T}^ n(M) \to \wedge ^ n(M) \to 0

where the pure tensor m_1 \otimes \ldots \otimes m_{n - 2} in the first summand maps to

\begin{align*} \underbrace{ m_1 \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_1} \text{ and } x_{i_2} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \\ + \underbrace{ m_1 \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_2} \text{ and } x_{i_1} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \end{align*}

and m_1 \otimes \ldots \otimes m_{n - 2} in the second summand maps to

\underbrace{ m_1 \otimes \ldots \otimes x_ i \otimes \ldots \otimes x_ i \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i} \text{ and } x_{i} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}}

There is also a canonical exact sequence

\bigoplus _{1 \leq j_1 < j_2 \leq n} \bigoplus _{i_1, i_2 \in I} \text{T}^{n - 2}(M) \to \text{T}^ n(M) \to \text{Sym}^ n(M) \to 0

where the pure tensor m_1 \otimes \ldots \otimes m_{n - 2} maps to

\begin{align*} \underbrace{ m_1 \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_1} \text{ and } x_{i_2} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \\ - \underbrace{ m_1 \otimes \ldots \otimes x_{i_2} \otimes \ldots \otimes x_{i_1} \otimes \ldots \otimes m_{n - 2} }_{\text{with } x_{i_2} \text{ and } x_{i_1} \text{ occupying slots } j_1 \text{ and } j_2 \text{ in the tensor}} \end{align*}

Proof. Omitted. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 10.13: Tensor algebra

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.