Lemma 13.34.5. Let $\mathcal{A}$ be an abelian category having enough injectives and exact countable products. Then for every complex there is a quasi-isomorphism to a K-injective complex.

Proof. By Lemma 13.34.4 it suffices to show that $K \to R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K$ is an isomorphism for all $K$ in $D(\mathcal{A})$. Consider the defining distinguished triangle

$R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K \to \prod \tau _{\geq -n}K \to \prod \tau _{\geq -n}K \to (R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K)$

By Lemma 13.34.2 we have

$H^ p(\prod \tau _{\geq -n}K) = \prod \nolimits _{p \geq -n} H^ p(K)$

It follows in a straightforward manner from the long exact cohomology sequence of the displayed distinguished triangle that $H^ p(R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K) = H^ p(K)$. $\square$

There are also:

• 2 comment(s) on Section 13.34: Derived limits

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).