Lemma 13.34.6. Let $\mathcal{A}$ be an abelian category having enough injectives and exact countable products. Then for every complex there is a quasi-isomorphism to a K-injective complex.
Proof. By Lemma 13.34.5 it suffices to show that $K \to R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K$ is an isomorphism for all $K$ in $D(\mathcal{A})$. Consider the defining distinguished triangle
\[ R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K \to \prod \tau _{\geq -n}K \to \prod \tau _{\geq -n}K \to (R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K)[1] \]
By Lemma 13.34.2 we have
\[ H^ p(\prod \tau _{\geq -n}K) = \prod \nolimits _{p \geq -n} H^ p(K) \]
It follows in a straightforward manner from the long exact cohomology sequence of the displayed distinguished triangle that $H^ p(R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K) = H^ p(K)$. $\square$
Comments (0)
There are also: