Lemma 13.34.4. Let $\mathcal{A}$ be an abelian category with countable products and enough injectives. Let $K^\bullet $ be a complex. Let $I_ n^\bullet $ be the inverse system of bounded below complexes of injectives produced by Lemma 13.29.3. Then $I^\bullet = \mathop{\mathrm{lim}}\nolimits I_ n^\bullet $ exists, is K-injective, and the following are equivalent

the map $K^\bullet \to I^\bullet $ is a quasi-isomorphism,

the canonical map $K^\bullet \to R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K^\bullet $ is an isomorphism in $D(\mathcal{A})$.

**Proof.**
The statement of the lemma makes sense as $R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K^\bullet $ exists by Lemma 13.34.3. Each complex $I_ n^\bullet $ is K-injective by Lemma 13.31.4. Choose direct sum decompositions $I_{n + 1}^ p = C_{n + 1}^ p \oplus I_ n^ p$ for all $n \geq 1$. Set $C_1^ p = I_1^ p$. The complex $I^\bullet = \mathop{\mathrm{lim}}\nolimits I_ n^\bullet $ exists because we can take $I^ p = \prod _{n \geq 1} C_ n^ p$. Fix $p \in \mathbf{Z}$. We claim there is a split short exact sequence

\[ 0 \to I^ p \to \prod I_ n^ p \to \prod I_ n^ p \to 0 \]

of objects of $\mathcal{A}$. Here the first map is given by the projection maps $I^ p \to I_ n^ p$ and the second map by $(x_ n) \mapsto (x_ n - f^ p_{n + 1}(x_{n + 1}))$ where $f^ p_ n : I_ n^ p \to I_{n - 1}^ p$ are the transition maps. The splitting comes from the map $\prod I_ n^ p \to \prod C_ n^ p = I^ p$. We obtain a termwise split short exact sequence of complexes

\[ 0 \to I^\bullet \to \prod I_ n^\bullet \to \prod I_ n^\bullet \to 0 \]

Hence a corresponding distinguished triangle in $K(\mathcal{A})$ and $D(\mathcal{A})$. By Lemma 13.31.5 the products are K-injective and represent the corresponding products in $D(\mathcal{A})$. It follows that $I^\bullet $ represents $R\mathop{\mathrm{lim}}\nolimits I_ n^\bullet $ (Definition 13.34.1). Moreover, it follows that $I^\bullet $ is K-injective by Lemma 13.31.3. By the commutative diagram of Lemma 13.29.3 we obtain a corresponding commutative diagram

\[ \xymatrix{ K^\bullet \ar[r] \ar[d] & R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n} K^\bullet \ar[d] \\ I^\bullet \ar[r] & R\mathop{\mathrm{lim}}\nolimits I_ n^\bullet } \]

in $D(\mathcal{A})$. Since the right vertical arrow is an isomorphism (as derived limits are defined on the level of the derived category and since $\tau _{\geq -n}K^\bullet \to I_ n^\bullet $ is a quasi-isomorphism), the lemma follows.
$\square$

## Comments (1)

Comment #2463 by anonymous on

There are also: