Lemma 13.34.4. Let $\mathcal{A}$ be an abelian category with countable products and enough injectives. Let $K^\bullet$ be a complex. Let $I_ n^\bullet$ be the inverse system of bounded below complexes of injectives produced by Lemma 13.29.3. Then $I^\bullet = \mathop{\mathrm{lim}}\nolimits I_ n^\bullet$ exists, is K-injective, and the following are equivalent

1. the map $K^\bullet \to I^\bullet$ is a quasi-isomorphism,

2. the canonical map $K^\bullet \to R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K^\bullet$ is an isomorphism in $D(\mathcal{A})$.

Proof. The statement of the lemma makes sense as $R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n}K^\bullet$ exists by Lemma 13.34.3. Each complex $I_ n^\bullet$ is K-injective by Lemma 13.31.4. Choose direct sum decompositions $I_{n + 1}^ p = C_{n + 1}^ p \oplus I_ n^ p$ for all $n \geq 1$. Set $C_1^ p = I_1^ p$. The complex $I^\bullet = \mathop{\mathrm{lim}}\nolimits I_ n^\bullet$ exists because we can take $I^ p = \prod _{n \geq 1} C_ n^ p$. Fix $p \in \mathbf{Z}$. We claim there is a split short exact sequence

$0 \to I^ p \to \prod I_ n^ p \to \prod I_ n^ p \to 0$

of objects of $\mathcal{A}$. Here the first map is given by the projection maps $I^ p \to I_ n^ p$ and the second map by $(x_ n) \mapsto (x_ n - f^ p_{n + 1}(x_{n + 1}))$ where $f^ p_ n : I_ n^ p \to I_{n - 1}^ p$ are the transition maps. The splitting comes from the map $\prod I_ n^ p \to \prod C_ n^ p = I^ p$. We obtain a termwise split short exact sequence of complexes

$0 \to I^\bullet \to \prod I_ n^\bullet \to \prod I_ n^\bullet \to 0$

Hence a corresponding distinguished triangle in $K(\mathcal{A})$ and $D(\mathcal{A})$. By Lemma 13.31.5 the products are K-injective and represent the corresponding products in $D(\mathcal{A})$. It follows that $I^\bullet$ represents $R\mathop{\mathrm{lim}}\nolimits I_ n^\bullet$ (Definition 13.34.1). Moreover, it follows that $I^\bullet$ is K-injective by Lemma 13.31.3. By the commutative diagram of Lemma 13.29.3 we obtain a corresponding commutative diagram

$\xymatrix{ K^\bullet \ar[r] \ar[d] & R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n} K^\bullet \ar[d] \\ I^\bullet \ar[r] & R\mathop{\mathrm{lim}}\nolimits I_ n^\bullet }$

in $D(\mathcal{A})$. Since the right vertical arrow is an isomorphism (as derived limits are defined on the level of the derived category and since $\tau _{\geq -n}K^\bullet \to I_ n^\bullet$ is a quasi-isomorphism), the lemma follows. $\square$

Comment #2463 by anonymous on

In item (2) of the lemma it should be $\tau_{\geq -n}$ and not $\leq$.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).