Proposition 15.94.2. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. The functor which sends $K \in D(A)$ to the derived limit $K' = R\mathop{\mathrm{lim}}\nolimits ( K \otimes _ A^\mathbf {L} A/I^ n )$ is the left adjoint to the inclusion functor $D_{comp}(A) \to D(A)$ constructed in Lemma 15.91.10.

Proof. Say $(f_1, \ldots , f_ r) = I$ and let $K_ n^\bullet$ be the Koszul complex with respect to $f_1^ n, \ldots , f_ r^ n$. By Lemma 15.91.18 it suffices to prove that

$R\mathop{\mathrm{lim}}\nolimits (K \otimes _ A^\mathbf {L} K_ n^\bullet ) = R\mathop{\mathrm{lim}}\nolimits (K \otimes _ A^\mathbf {L} A/(f_1^ n, \ldots , f_ r^ n) ) = R\mathop{\mathrm{lim}}\nolimits (K \otimes _ A^\mathbf {L} A/I^ n ).$

By Lemma 15.94.1 the pro-objects $\{ K_ n^\bullet \}$ and $\{ A/(f_1^ n, \ldots , f_ r^ n)\}$ of $D(A)$ are isomorphic. It is clear that the pro-objects $\{ A/(f_1^ n, \ldots , f_ r^ n)\}$ and $\{ A/I^ n\}$ are isomorphic. Thus the map from left to right is an isomorphism by Lemma 15.87.12. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).