The Stacks project

Lemma 15.91.2. Let $A$ be a ring and $f \in A$. Set $I = (f)$. In this situation we have the naive derived completion $K \mapsto K' = R\mathop{\mathrm{lim}}\nolimits (K \otimes _ A^\mathbf {L} A/f^ nA)$ and the derived completion

\[ K \mapsto K^\wedge = R\mathop{\mathrm{lim}}\nolimits (K \otimes _ A^\mathbf {L} (A \xrightarrow {f^ n} A)) \]

of Lemma 15.90.18. The natural transformation of functors $K^\wedge \to K'$ is an isomorphism if and only if the $f$-power torsion of $A$ is bounded.

Proof. If the $f$-power torsion is bounded, then the pro-objects $\{ (f^ n : A \to A)\} $ and $\{ A/f^ nA\} $ are isomorphic by Lemma 15.91.1. Hence the functors are isomorphic by Lemma 15.85.10. Conversely, we see from Lemma 15.86.11 that the condition is exactly that

\[ R\mathop{\mathrm{lim}}\nolimits (K \otimes _ A^\mathbf {L} A[f^ n]) \]

is zero for all $K \in D(A)$. Here the maps of the system $(A[f^ n])$ are given by multiplication by $f$. Taking $K = A$ and $K = \bigoplus _{i \in \mathbf{N}} A$ we see from Lemma 15.85.13 this implies $(A[f^ n])$ is zero as a pro-object, i.e., $f^{n - 1}A[f^ n] = 0$ for some $n$, i.e., $A[f^{n - 1}] = A[f^ n]$, i.e., the $f$-power torsion is bounded. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0923. Beware of the difference between the letter 'O' and the digit '0'.