Proposition 21.51.2. Let \mathcal{C} be a site. Let \mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) such that every U \in \mathcal{B} is weakly contractible and every object of \mathcal{C} has a covering by elements of \mathcal{B}. Let \mathcal{O} be a sheaf of rings on \mathcal{C}. Then
A complex \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 of \mathcal{O}-modules is exact, if and only if \mathcal{F}_1(U) \to \mathcal{F}_2(U) \to \mathcal{F}_3(U) is exact for all U \in \mathcal{B}.
Every object K of D(\mathcal{O}) is a derived limit of its canonical truncations: K = R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n} K.
Given an inverse system \ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1 with surjective transition maps, the projection \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n \to \mathcal{F}_1 is surjective.
Products are exact on \textit{Mod}(\mathcal{O}).
Products on D(\mathcal{O}) can be computed by taking products of any representative complexes.
If (\mathcal{F}_ n) is an inverse system of \mathcal{O}-modules, then R^ p\mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n = 0 for all p > 1 and
R^1\mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n = \mathop{\mathrm{Coker}}(\prod \mathcal{F}_ n \to \prod \mathcal{F}_ n)where the map is (x_ n) \mapsto (x_ n - f(x_{n + 1})).
If (K_ n) is an inverse system of objects of D(\mathcal{O}), then there are short exact sequences
0 \to R^1\mathop{\mathrm{lim}}\nolimits H^{p - 1}(K_ n) \to H^ p(R\mathop{\mathrm{lim}}\nolimits K_ n) \to \mathop{\mathrm{lim}}\nolimits H^ p(K_ n) \to 0
Comments (0)