Lemma 59.21.2. Let S be a scheme. The étale topos of S is independent (up to canonical equivalence) of the construction of the small étale site in Definition 59.20.2.
Proof. We have to show, given two big étale sites \mathit{Sch}_{\acute{e}tale} and \mathit{Sch}_{\acute{e}tale}' containing S, then \mathop{\mathit{Sh}}\nolimits (S_{\acute{e}tale}) \cong \mathop{\mathit{Sh}}\nolimits (S_{\acute{e}tale}') with obvious notation. By Topologies, Lemma 34.12.1 we may assume \mathit{Sch}_{\acute{e}tale}\subset \mathit{Sch}_{\acute{e}tale}'. By Sets, Lemma 3.9.9 any affine scheme étale over S is isomorphic to an object of both \mathit{Sch}_{\acute{e}tale} and \mathit{Sch}_{\acute{e}tale}'. Thus the induced functor S_{affine, {\acute{e}tale}} \to S_{affine, {\acute{e}tale}}' is an equivalence. Moreover, it is clear that both this functor and a quasi-inverse map transform standard étale coverings into standard étale coverings. Hence the result follows from Topologies, Lemma 34.4.12. \square
Comments (0)