Lemma 61.3.4. Let A be a ring. Let B \to C be an A-algebra homomorphism.
If A \to B and A \to C are local isomorphisms, then B \to C is a local isomorphism.
If A \to B and A \to C identify local rings, then B \to C identifies local rings.
Lemma 61.3.4. Let A be a ring. Let B \to C be an A-algebra homomorphism.
If A \to B and A \to C are local isomorphisms, then B \to C is a local isomorphism.
If A \to B and A \to C identify local rings, then B \to C identifies local rings.
Proof. Omitted. \square
Comments (0)