Lemma 61.12.5. Let $T$ be an affine scheme. Let $\{ T_ i \to T\} _{i \in I}$ be a pro-étale covering of $T$. Then there exists a pro-étale covering $\{ U_ j \to T\} _{j = 1, \ldots , n}$ which is a refinement of $\{ T_ i \to T\} _{i \in I}$ such that each $U_ j$ is an affine scheme. Moreover, we may choose each $U_ j$ to be open affine in one of the $T_ i$.
Proof. This follows directly from the definition. $\square$
Comments (0)
There are also: