Processing math: 100%

The Stacks project

Lemma 61.12.13. Let S be a scheme. Let \mathit{Sch}_{pro\text{-}\acute{e}tale} be a big pro-étale site containing S. The inclusion functor S_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale} satisfies the hypotheses of Sites, Lemma 7.21.8 and hence induces a morphism of sites

\pi _ S : (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}\longrightarrow S_{pro\text{-}\acute{e}tale}

and a morphism of topoi

i_ S : \mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}) \longrightarrow \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale})

such that \pi _ S \circ i_ S = \text{id}. Moreover, i_ S = i_{\text{id}_ S} with i_{\text{id}_ S} as in Lemma 61.12.12. In particular the functor i_ S^{-1} = \pi _{S, *} is described by the rule i_ S^{-1}(\mathcal{G})(U/S) = \mathcal{G}(U/S).

Proof. In this case the functor u : S_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}, in addition to the properties seen in the proof of Lemma 61.12.12 above, also is fully faithful and transforms the final object into the final object. The lemma follows from Sites, Lemma 7.21.8. \square


Comments (0)

There are also:

  • 6 comment(s) on Section 61.12: The pro-étale site

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.