Lemma 61.12.13. Let S be a scheme. Let \mathit{Sch}_{pro\text{-}\acute{e}tale} be a big pro-étale site containing S. The inclusion functor S_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale} satisfies the hypotheses of Sites, Lemma 7.21.8 and hence induces a morphism of sites
\pi _ S : (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}\longrightarrow S_{pro\text{-}\acute{e}tale}
and a morphism of topoi
i_ S : \mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}) \longrightarrow \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale})
such that \pi _ S \circ i_ S = \text{id}. Moreover, i_ S = i_{\text{id}_ S} with i_{\text{id}_ S} as in Lemma 61.12.12. In particular the functor i_ S^{-1} = \pi _{S, *} is described by the rule i_ S^{-1}(\mathcal{G})(U/S) = \mathcal{G}(U/S).
Proof.
In this case the functor u : S_{pro\text{-}\acute{e}tale}\to (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}, in addition to the properties seen in the proof of Lemma 61.12.12 above, also is fully faithful and transforms the final object into the final object. The lemma follows from Sites, Lemma 7.21.8.
\square
Comments (0)
There are also: