Lemma 61.12.19. Let S be a scheme contained in a big pro-étale site \mathit{Sch}_{pro\text{-}\acute{e}tale}. A sheaf \mathcal{F} on the big pro-étale site (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale} is given by the following data:
for every T/S \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}) a sheaf \mathcal{F}_ T on T_{pro\text{-}\acute{e}tale},
for every f : T' \to T in (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale} a map c_ f : f_{small}^{-1}\mathcal{F}_ T \to \mathcal{F}_{T'}.
These data are subject to the following conditions:
given any f : T' \to T and g : T'' \to T' in (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale} the composition c_ g \circ g_{small}^{-1}c_ f is equal to c_{f \circ g}, and
if f : T' \to T in (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale} is weakly étale then c_ f is an isomorphism.
Comments (0)
There are also: