Definition 61.26.1. Let j : U \to X be a weakly étale morphism of schemes.
The restriction functor j^{-1} : \mathop{\mathit{Sh}}\nolimits (X_{pro\text{-}\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (U_{pro\text{-}\acute{e}tale}) has a left adjoint j_!^{Sh} : \mathop{\mathit{Sh}}\nolimits (X_{pro\text{-}\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (U_{pro\text{-}\acute{e}tale}).
The restriction functor j^{-1} : \textit{Ab}(X_{pro\text{-}\acute{e}tale}) \to \textit{Ab}(U_{pro\text{-}\acute{e}tale}) has a left adjoint which is denoted j_! : \textit{Ab}(U_{pro\text{-}\acute{e}tale}) \to \textit{Ab}(X_{pro\text{-}\acute{e}tale}) and called extension by zero.
Let \Lambda be a ring. The functor j^{-1} : \textit{Mod}(X_{pro\text{-}\acute{e}tale}, \Lambda ) \to \textit{Mod}(U_{pro\text{-}\acute{e}tale}, \Lambda ) has a left adjoint j_! : \textit{Mod}(U_{pro\text{-}\acute{e}tale}, \Lambda ) \to \textit{Mod}(X_{pro\text{-}\acute{e}tale}, \Lambda ) and called extension by zero.
Comments (0)