Definition 61.28.1. Let \Lambda be a Noetherian ring and let I \subset \Lambda be an ideal. Let X be a scheme. Let \mathcal{F} be a sheaf of \Lambda -modules on X_{pro\text{-}\acute{e}tale}.
We say \mathcal{F} is a constructible \Lambda -sheaf if \mathcal{F} = \mathop{\mathrm{lim}}\nolimits \mathcal{F}/I^ n\mathcal{F} and each \mathcal{F}/I^ n\mathcal{F} is a constructible sheaf of \Lambda /I^ n-modules.
If \mathcal{F} is a constructible \Lambda -sheaf, then we say \mathcal{F} is lisse if each \mathcal{F}/I^ n\mathcal{F} is locally constant.
We say \mathcal{F} is adic lisse1 if there exists a I-adically complete \Lambda -module M with M/IM finite such that \mathcal{F} is locally isomorphic to
\underline{M}^\wedge = \mathop{\mathrm{lim}}\nolimits \underline{M/I^ nM}.We say \mathcal{F} is adic constructible2 if for every affine open U \subset X there exists a decomposition U = \coprod U_ i into constructible locally closed subschemes such that \mathcal{F}|_{U_ i} is adic lisse.
Comments (0)
There are also: