The Stacks project

Lemma 15.115.16. Let $A \subset B \subset C$ be extensions of discrete valuation rings with fractions fields $K \subset L \subset M$. Assume

  1. $A$ has mixed characteristic $(0, p)$,

  2. $A \subset B$ weakly unramified,

  3. $B$ contains a primitive $p$th root of $1$,

  4. $M/L$ is a degree $p$ extension of finite level $l > 0$,

  5. $\kappa _ A = \bigcap _{n \geq 1} \kappa _ B^{p^ n}$.

Then there exists a finite separable extension $K_1$ of $K$ totally ramified with respect to $A$ such that either $K_1$ is a weak solution for $A \to C$, or the extension $M_1/L_1$ is a degree $p$ extension of finite level $\leq \max (0, l - 1, 2l - p)$.

Proof. Let $\pi \in A$ be a uniformizer. Let $w \in B$ and $P \in B[t]$ be as in Lemma 15.115.13 (for $B$). Set $e_1 = \text{ord}_ B(w)$, so that $w$ and $\pi ^{e_1}$ are associates in $B$. Pick $z \in M$ generating $M$ over $L$ with $\xi = P(z) \in K$ and $n$ such that $\pi ^ n\xi \in B$ as in the definition of the level of $M$ over $L$, i.e., $l = n/e_1$.

The proof of this lemma is completely similar to the proof of Lemma 15.115.12. To explain what is going on, observe that
\begin{equation} \label{more-algebra-equation-first-congruence} P(z) \equiv z^ p - z \bmod \pi ^{-n + e_1}B \end{equation}

for any $z \in L$ such that $\pi ^{-n} P(z) \in B$ (use that $z$ has valuation at worst $-n/p$ and the shape of the polynomial $P$). Moreover, we have
\begin{equation} \label{more-algebra-equation-second-congruence} \xi _1 + \xi _2 + w^ p \xi _1 \xi _2 \equiv \xi _1 + \xi _2 \bmod \pi ^{-2n + pe_1}B \end{equation}

for $\xi _1, \xi _2 \in \pi ^{-n}B$. Finally, observe that $n - e_1 = (l - 1)/e_1$ and $-2n + pe_1 = -(2l - p)e_1$. Write $m = n - e_1 \max (0, l - 1, 2l - p)$. The above shows that doing calculations in $\pi ^{-n}B / \pi ^{-n + m}B$ the polynomial $P$ behaves exactly as the polynomial $z^ p - z$. This explains why the lemma is true but we also give the details below.

Assumption (4) implies that $\kappa _ A$ is perfect. Observe that $m \leq e_1$ and hence $A/\pi ^ m$ is annihilated by $w$ and hence $p$. Thus we may choose compatible ring maps $\overline{\sigma } : \kappa _ A \to A/\pi ^ mA$ and $\overline{\sigma } : \kappa _ B \to B/\pi ^ mB$ as in Lemma 15.115.10. We lift the second of these to a map of sets $\sigma : \kappa _ B \to B$. Then we can write

\[ \xi = \sum \nolimits _{i = n, \ldots , n - m + 1} \sigma (\lambda _ i) \pi ^{-i} + \pi ^{-n + m)} b \]

for some $\lambda _ i \in \kappa _ B$ and $b \in B$. Let

\[ I = \{ i \in \{ n, \ldots , n - m + 1\} \mid \lambda _ i \in \kappa _ A\} \]


\[ J = \{ j \in \{ n, \ldots , n - m + 1\} \mid \lambda _ i \not\in \kappa _ A\} \]

We will argue by induction on the size of the finite set $J$.

The case $J = \emptyset $. Here for all $i \in \{ n, \ldots , n - m + 1\} $ we have $\sigma (\lambda _ i) = a_ i + \pi ^{n - m}b_ i$ for some $a_ i \in A$ and $b_ i \in B$ by our choice of $\overline{\sigma }$. Thus $\xi = \pi ^{-n} a + \pi ^{-n + m} b$ for some $a \in A$ and $b \in B$. If $p | n$, then we write $a = a_0^ p + \pi a_1$ for some $a_0, a_1 \in A$ (as the residue field of $A$ is perfect). Set $z_1 = - \pi ^{-n/p} a_0$. Note that $P(z_1) \in \pi ^{-n}B$ and that $z + z_1 + w z z_1$ is an element generating $M$ over $L$ (note that $wz_1 \not= -1$ as $n < pe_1$). Moreover, by Lemma 15.115.13 we have

\[ P(z + z_1 + w z z_1) = P(z) + P(z_1) + w^ p P(z) P(z_1) \in K \]

and by equations ( and ( we have

\[ P(z) + P(z_1) + w^ p P(z) P(z_1) \equiv \xi + z_1^ p - z_1 \bmod \pi ^{-n + m}B \]

for some $b' \in B$. This contradict the minimality of $n$! Thus $p$ does not divide $n$. Consider the degree $p$ extension $K_1$ of $K$ given by $P(y) = -\pi ^{-n}a$. By Lemma 15.115.14 this extension is separable and totally ramified with respect to $A$. Thus $L_1 = L \otimes _ K K_1$ is a field and $A_1 \subset B_1$ is weakly unramified (Lemma 15.115.3). By Lemma 15.115.14 the ring $M_1 = M \otimes _ K K_1$ is either a product of $p$ copies of $L_1$ (in which case we are done) or a field extension of $L_1$ of degree $p$. Moreover, in the second case, either $C_1$ is weakly unramified over $B_1$ (in which case we are done) or $M_1/L_1$ is degree $p$, Galois, totally ramified with respect to $B_1$. In this last case the extension $M_1/L_1$ is generated by the element $z + y + wzy$ and we see that $P(z + y + wzy) \in L_1$ and

\begin{align*} P(z + y + wzy) & = P(z) + P(y) + w^ p P(z) P(y) \\ & \equiv \xi - \pi ^{-n}a \bmod \pi ^{-n + m}B_1 \\ & \equiv 0 \bmod \pi ^{-n + m}B_1 \end{align*}

in exactly the same manner as above. By our choice of $m$ this means exactly that $M_1/L_1$ has level at most $\max (0, l - 1, 2l - p)$. From now on we assume that $J \not= \emptyset $.

Suppose that $j', j \in J$ such that $j' = p^ r j$ for some $r > 0$. Then we set

\[ z_1 = - \sigma (\lambda _ j) \pi ^{-j} - \sigma (\lambda _ j^ p) \pi ^{-pj} - \ldots - \sigma (\lambda _ j^{p^{r - 1}}) \pi ^{-p^{r - 1}j} \]

and we change $z$ into $z' = z + z_1 + wzz_1$. Observe that $z' \in M$ generates $M$ over $L$ and that we have $\xi ' = P(z') = P(z) + P(z_1) + wP(z)P(z_1) \in L$ with

\[ \xi ' \equiv \xi - \sigma (\lambda _ j) \pi ^{-j} + \sigma (\lambda _ j^{p^ r}) \pi ^{-j'} \bmod \pi ^{-n + m}B \]

by using equations ( and ( as above. Writing

\[ \xi ' = \sum \nolimits _{i = n, \ldots , n - m + 1} \sigma (\lambda '_ i) \pi ^{-i} + \pi ^{-n + m}b' \]

as before we find that $\lambda '_ i = \lambda _ i$ for $i \not= j, j'$ and $\lambda '_ j = 0$. Thus the set $J$ has gotten smaller. By induction on the size of $J$ we may assume there is no pair $j, j'$ of $J$ such that $j'/j$ is a power of $p$. (Please observe that in this procedure we may get thrown back into the case that $J = \emptyset $ we treated above.)

For $j \in J$ write $\lambda _ j = \mu _ j^{p^{r_ j}}$ for some $r_ j \geq 0$ and $\mu _ j \in \kappa _ B$ which is not a $p$th power. This is possible by our assumption (4). Let $j \in J$ be the unique index such that $j p^{-r_ j}$ is maximal. (The index is unique by the result of the preceding paragraph.) Choose $r > \max (r_ j + 1)$ and such that $j p^{r - r_ j} > n$ for $j \in J$. Let $K_1/K$ be the extension of degree $p^ r$, totally ramified with respect to $A$, defined by $(\pi ')^{p^ r} = \pi $. Observe that $\pi '$ is the uniformizer of the corresponding discrete valuation ring $A_1 \subset K_1$. Observe that $L_1 = L \otimes _ K K_1$ is a field and $L_1/L$ is totally ramified with respect to $B$ (Lemma 15.115.3). Computing in the integral closure $B_1$ we get

\[ \xi = \sum \nolimits _{i \in I} \sigma (\lambda _ i) (\pi ')^{-i p^ r} + \sum \nolimits _{j \in J} \sigma (\mu _ j)^{p^{r_ j}} (\pi ')^{-j p^ r} + \pi ^{-n + m} b_1 \]

for some $b_1 \in B_1$. Note that $\sigma (\lambda _ i)$ for $i \in I$ is a $q$th power modulo $\pi ^ m$, i.e., modulo $(\pi ')^{m p^ r}$. Hence we can rewrite the above as

\[ \xi = \sum \nolimits _{i \in I} x_ i^{p^ r} (\pi ')^{-i p^ r} + \sum \nolimits _{j \in J} \sigma (\mu _ j)^{p^{r_ j}} (\pi ')^{- j p^ r} + \pi ^{-n + m}b_1 \]

Similar to our choice in the previous paragraph we set

\begin{align*} z_1 & - \sum \nolimits _{i \in I} \left(x_ i (\pi ')^{-i} + \ldots + x_ i^{p^{r - 1}} (\pi ')^{-i p^{r - 1}}\right) \\ & - \sum \nolimits _{j \in J} \left( \sigma (\mu _ j) (\pi ')^{- j p^{r - r_ j}} + \ldots + \sigma (\mu _ j)^{p^{r_ j - 1}} (\pi ')^{- j p^{r - 1}} \right) \end{align*}

and we change our choice of $z$ into $z' = z + z_1 + wzz_1$. Then $z'$ generates $M_1$ over $L_1$ and $\xi ' = P(z') = P(z) + P(z_1) + w^ p P(z) P(z_1) \in L_1$ and a calculation shows that

\[ \xi ' \equiv \sum \nolimits _{i \in I} x_ i (\pi ')^{-i} + \sum \nolimits _{j \in J} \sigma (\mu _ j) (\pi ')^{- j p^{r - r_ j}} + (\pi ')^{(-n + m)p^ r}b'_1 \]

for some $b'_1 \in B_1$. There is a unique $j$ such that $j p^{r - r_ j}$ is maximal and $j p^{r - r_ j}$ is bigger than $i \in I$. If $j p^{r - r_ j} \leq (n - m)p^ r$ then the level of the extension $M_1/L_1$ is less than $\max (0, l - 1, 2l - p)$. If not, then, as $p$ divides $j p^{r - r_ j}$, we see that $M_1 / L_1$ falls into case (C) of Lemma 15.115.14. This finishes the proof. $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 15.115: Eliminating ramification

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09F5. Beware of the difference between the letter 'O' and the digit '0'.