The Stacks project

Lemma 22.12.2. Let $(A, \text{d})$ be a differential graded algebra. If $M$ is a left differential graded $A$-module and $N$ is a right differential graded $A$-module, then

\[ \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}_{(A, \text{d})}}(N, M^\vee ) \]

is isomorphic to the set of sequences $(\psi _ n)$ of $\mathbf{Z}$-bilinear pairings

\[ \psi _ n : N^ n \times M^{-n} \longrightarrow \mathbf{Q}/\mathbf{Z} \]

such that $\psi _{n + m}(y, ax) = \psi _{n + m}(ya, x)$ for all $y \in N^ n$, $x \in M^{-m}$, and $a \in A^{m - n}$ and such that $\psi _{n + 1}(\text{d}(y), x) + (-1)^ n \psi _ n(y, \text{d}(x)) = 0$ for all $y \in N^ n$ and $x \in M^{-n - 1}$.

Proof. If $f \in \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}_{(A, \text{d})}}(N, M^\vee )$, then we map this to the sequence of pairings defined by $\psi _ n(y, x) = f(y)(x)$. It is a computation (omitted) to see that these pairings satisfy the conditions as in the lemma. For the converse, use Algebra, Lemma 10.11.8 to turn a sequence of pairings into a map $f : N \to M^\vee $. $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 22.12: Injective modules over algebras

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09K3. Beware of the difference between the letter 'O' and the digit '0'.