Definition 22.26.1. Let $R$ be a ring. A differential graded category $\mathcal{A}$ over $R$ is a category where every morphism set is given the structure of a differential graded $R$-module and where for $x, y, z \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ composition is $R$-bilinear and induces a homomorphism
\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(y, z) \otimes _ R \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(x, y) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(x, z) \]
of differential graded $R$-modules.
Comments (0)
There are also: