## 22.24 Linear categories

Just the definitions.

Definition 22.24.1. Let $R$ be a ring. An $R$-linear category $\mathcal{A}$ is a category where every morphism set is given the structure of an $R$-module and where for $x, y, z \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ composition law

$\mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(y, z) \times \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(x, y) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(x, z)$

is $R$-bilinear.

Thus composition determines an $R$-linear map

$\mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(y, z) \otimes _ R \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(x, y) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(x, z)$

of $R$-modules. Note that we do not assume $R$-linear categories to be additive.

Definition 22.24.2. Let $R$ be a ring. A functor of $R$-linear categories, or an $R$-linear functor is a functor $F : \mathcal{A} \to \mathcal{B}$ where for all objects $x, y$ of $\mathcal{A}$ the map $F : \mathop{\mathrm{Hom}}\nolimits _\mathcal {A}(x, y) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(F(x), F(y))$ is a homomorphism of $R$-modules.

Comment #6795 by PS on

In 09MK, should it be R-linear functor? The last Hom_A should be Hom_B.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).