Lemma 35.25.4. Let $f : X \to Y$ be a morphism of schemes. Let $X^0$ denote the set of generic points of irreducible components of $X$. If
$f$ is étale and separated,
for $\xi \in X^0$ we have $\kappa (f(\xi )) = \kappa (\xi )$, and
if $\xi , \xi ' \in X^0$, $\xi \not= \xi '$, then $f(\xi ) \not= f(\xi ')$,
then $f$ is an open immersion.
Comments (0)
There are also: