The Stacks project

Lemma 23.7.5. Let $(A, \mathfrak m)$ be a Noetherian local ring. Let $I \subset J \subset A$ be proper ideals. Assume

  1. $A/J$ has finite tor dimension over $A/I$, and

  2. $J$ is generated by a regular sequence.

Then $I$ is generated by a regular sequence and $J/I$ is generated by a regular sequence.

Proof. By Lemma 23.7.4 we see that $I/\mathfrak m I \to J/\mathfrak m J$ is injective. Thus we can find $s \leq r$ and a minimal system of generators $f_1, \ldots , f_ r$ of $J$ such that $f_1, \ldots , f_ s$ are in $I$ and form a minimal system of generators of $I$. The lemma follows as any minimal system of generators of $J$ is a regular sequence by More on Algebra, Lemmas 15.30.15 and 15.30.7. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 23.7: Application to complete intersections

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09PW. Beware of the difference between the letter 'O' and the digit '0'.