The Stacks project

23.7 Application to complete intersections

Let $R$ be a ring. Let $(A, \text{d}, \gamma )$ be as in Definition 23.6.5. A derivation of degree $2$ is an $R$-linear map $\theta : A \to A$ with the following properties

  1. $\theta (A_ d) \subset A_{d - 2}$,

  2. $\theta (xy) = \theta (x)y + x\theta (y)$,

  3. $\theta $ commutes with $\text{d}$,

  4. $\theta (\gamma _ n(x)) = \theta (x) \gamma _{n - 1}(x)$ for all $x \in A_{2d}$ all $d$.

In the following lemma we construct a derivation.

Lemma 23.7.1. Let $R$ be a ring. Let $(A, \text{d}, \gamma )$ be as in Definition 23.6.5. Let $R' \to R$ be a surjection of rings whose kernel has square zero and is generated by one element $f$. If $A$ is a graded divided power polynomial algebra over $R$ with finitely many variables in each degree, then we obtain a derivation $\theta : A/IA \to A/IA$ where $I$ is the annihilator of $f$ in $R$.

Proof. Since $A$ is a divided power polynomial algebra, we can find a divided power polynomial algebra $A'$ over $R'$ such that $A = A' \otimes _{R'} R$. Moreover, we can lift $\text{d}$ to an $R$-linear operator $\text{d}$ on $A'$ such that

  1. $\text{d}(xy) = \text{d}(x)y + (-1)^{\deg (x)}x \text{d}(y)$ for $x, y \in A'$ homogeneous, and

  2. $\text{d}(\gamma _ n(x)) = \text{d}(x) \gamma _{n - 1}(x)$ for $x \in A'_{even, +}$.

We omit the details (hint: proceed one variable at the time). However, it may not be the case that $\text{d}^2$ is zero on $A'$. It is clear that $\text{d}^2$ maps $A'$ into $fA' \cong A/IA$. Hence $\text{d}^2$ annihilates $fA'$ and factors as a map $A \to A/IA$. Since $\text{d}^2$ is $R$-linear we obtain our map $\theta : A/IA \to A/IA$. The verification of the properties of a derivation is immediate. $\square$

Lemma 23.7.2. Assumption and notation as in Lemma 23.7.1. Suppose $S = H_0(A)$ is isomorphic to $R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$ for some $n$, $m$, and $f_ j \in R[x_1, \ldots , x_ n]$. Moreover, suppose given a relation

\[ \sum r_ j f_ j = 0 \]

with $r_ j \in R[x_1, \ldots , x_ n]$. Choose $r'_ j, f'_ j \in R'[x_1, \ldots , x_ n]$ lifting $r_ j, f_ j$. Write $\sum r'_ j f'_ j = gf$ for some $g \in R/I[x_1, \ldots , x_ n]$. If $H_1(A) = 0$ and all the coefficients of each $r_ j$ are in $I$, then there exists an element $\xi \in H_2(A/IA)$ such that $\theta (\xi ) = g$ in $S/IS$.

Proof. Let $A(0) \subset A(1) \subset A(2) \subset \ldots $ be the filtration of $A$ such that $A(m)$ is gotten from $A(m - 1)$ by adjoining divided power variables of degree $m$. Then $A(0)$ is a polynomial algebra over $R$ equipped with an $R$-algebra surjection $A(0) \to S$. Thus we can choose a map

\[ \varphi : R[x_1, \ldots , x_ n] \to A(0) \]

lifting the augmentations to $S$. Next, $A(1) = A(0)\langle T_1, \ldots , T_ t \rangle $ for some divided power variables $T_ i$ of degree $1$. Since $H_0(A) = S$ we can pick $\xi _ j \in \sum A(0)T_ i$ with $\text{d}(\xi _ j) = \varphi (f_ j)$. Then

\[ \text{d}\left(\sum \varphi (r_ j) \xi _ j\right) = \sum \varphi (r_ j) \varphi (f_ j) = \sum \varphi (r_ jf_ j) = 0 \]

Since $H_1(A) = 0$ we can pick $\xi \in A_2$ with $\text{d}(\xi ) = \sum \varphi (r_ j) \xi _ j$. If the coefficients of $r_ j$ are in $I$, then the same is true for $\varphi (r_ j)$. In this case $\text{d}(\xi )$ dies in $A_1/IA_1$ and hence $\xi $ defines a class in $H_2(A/IA)$.

The construction of $\theta $ in the proof of Lemma 23.7.1 proceeds by successively lifting $A(i)$ to $A'(i)$ and lifting the differential $\text{d}$. We lift $\varphi $ to $\varphi ' : R'[x_1, \ldots , x_ n] \to A'(0)$. Next, we have $A'(1) = A'(0)\langle T_1, \ldots , T_ t\rangle $. Moreover, we can lift $\xi _ j$ to $\xi '_ j \in \sum A'(0)T_ i$. Then $\text{d}(\xi '_ j) = \varphi '(f'_ j) + f a_ j$ for some $a_ j \in A'(0)$. Consider a lift $\xi ' \in A'_2$ of $\xi $. Then we know that

\[ \text{d}(\xi ') = \sum \varphi '(r'_ j)\xi '_ j + \sum fb_ iT_ i \]

for some $b_ i \in A(0)$. Applying $\text{d}$ again we find

\[ \theta (\xi ) = \sum \varphi '(r'_ j)\varphi '(f'_ j) + \sum f \varphi '(r'_ j) a_ j + \sum fb_ i \text{d}(T_ i) \]

The first term gives us what we want. The second term is zero because the coefficients of $r_ j$ are in $I$ and hence are annihilated by $f$. The third term maps to zero in $H_0$ because $\text{d}(T_ i)$ maps to zero. $\square$

The method of proof of the following lemma is apparently due to Gulliksen.

Lemma 23.7.3. Let $R' \to R$ be a surjection of Noetherian rings whose kernel has square zero and is generated by one element $f$. Let $S = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$. Let $\sum r_ j f_ j = 0$ be a relation in $R[x_1, \ldots , x_ n]$. Assume that

  1. each $r_ j$ has coefficients in the annihilator $I$ of $f$ in $R$,

  2. for some lifts $r'_ j, f'_ j \in R'[x_1, \ldots , x_ n]$ we have $\sum r'_ j f'_ j = gf$ where $g$ is not nilpotent in $S/IS$.

Then $S$ does not have finite tor dimension over $R$ (i.e., $S$ is not a perfect $R$-algebra).

Proof. Choose a Tate resolution $R \to A \to S$ as in Lemma 23.6.9. Let $\xi \in H_2(A/IA)$ and $\theta : A/IA \to A/IA$ be the element and derivation found in Lemmas 23.7.1 and 23.7.2. Observe that

\[ \theta ^ n(\gamma _ n(\xi )) = g^ n \]

in $H_0(A/IA) = S/IS$. Hence if $g$ is not nilpotent in $S/IS$, then $\xi ^ n$ is nonzero in $H_{2n}(A/IA)$ for all $n > 0$. Since $H_{2n}(A/IA) = \text{Tor}^ R_{2n}(S, R/I)$ we conclude. $\square$

The following result can be found in [Rodicio].

Lemma 23.7.4. Let $(A, \mathfrak m)$ be a Noetherian local ring. Let $I \subset J \subset A$ be proper ideals. If $A/J$ has finite tor dimension over $A/I$, then $I/\mathfrak m I \to J/\mathfrak m J$ is injective.

Proof. Let $f \in I$ be an element mapping to a nonzero element of $I/\mathfrak m I$ which is mapped to zero in $J/\mathfrak mJ$. We can choose an ideal $I'$ with $\mathfrak mI \subset I' \subset I$ such that $I/I'$ is generated by the image of $f$. Set $R = A/I$ and $R' = A/I'$. Let $J = (a_1, \ldots , a_ m)$ for some $a_ j \in A$. Then $f = \sum b_ j a_ j$ for some $b_ j \in \mathfrak m$. Let $r_ j, f_ j \in R$ resp. $r'_ j, f'_ j \in R'$ be the image of $b_ j, a_ j$. Then we see we are in the situation of Lemma 23.7.3 (with the ideal $I$ of that lemma equal to $\mathfrak m_ R$) and the lemma is proved. $\square$

Lemma 23.7.5. Let $(A, \mathfrak m)$ be a Noetherian local ring. Let $I \subset J \subset A$ be proper ideals. Assume

  1. $A/J$ has finite tor dimension over $A/I$, and

  2. $J$ is generated by a regular sequence.

Then $I$ is generated by a regular sequence and $J/I$ is generated by a regular sequence.

Proof. By Lemma 23.7.4 we see that $I/\mathfrak m I \to J/\mathfrak m J$ is injective. Thus we can find $s \leq r$ and a minimal system of generators $f_1, \ldots , f_ r$ of $J$ such that $f_1, \ldots , f_ s$ are in $I$ and form a minimal system of generators of $I$. The lemma follows as any minimal system of generators of $J$ is a regular sequence by More on Algebra, Lemmas 15.30.15 and 15.30.7. $\square$

Lemma 23.7.6. Let $R \to S$ be a local ring map of Noetherian local rings. Let $I \subset R$ and $J \subset S$ be ideals with $IS \subset J$. If $R \to S$ is flat and $S/\mathfrak m_ RS$ is regular, then the following are equivalent

  1. $J$ is generated by a regular sequence and $S/J$ has finite tor dimension as a module over $R/I$,

  2. $J$ is generated by a regular sequence and $\text{Tor}^{R/I}_ p(S/J, R/\mathfrak m_ R)$ is nonzero for only finitely many $p$,

  3. $I$ is generated by a regular sequence and $J/IS$ is generated by a regular sequence in $S/IS$.

Proof. If (3) holds, then $J$ is generated by a regular sequence, see for example More on Algebra, Lemmas 15.30.13 and 15.30.7. Moreover, if (3) holds, then $S/J = (S/I)/(J/I)$ has finite projective dimension over $S/IS$ because the Koszul complex will be a finite free resolution of $S/J$ over $S/IS$. Since $R/I \to S/IS$ is flat, it then follows that $S/J$ has finite tor dimension over $R/I$ by More on Algebra, Lemma 15.66.11. Thus (3) implies (1).

The implication (1) $\Rightarrow $ (2) is trivial. Assume (2). By More on Algebra, Lemma 15.77.6 we find that $S/J$ has finite tor dimension over $S/IS$. Thus we can apply Lemma 23.7.5 to conclude that $IS$ and $J/IS$ are generated by regular sequences. Let $f_1, \ldots , f_ r \in I$ be a minimal system of generators of $I$. Since $R \to S$ is flat, we see that $f_1, \ldots , f_ r$ form a minimal system of generators for $IS$ in $S$. Thus $f_1, \ldots , f_ r \in R$ is a sequence of elements whose images in $S$ form a regular sequence by More on Algebra, Lemmas 15.30.15 and 15.30.7. Thus $f_1, \ldots , f_ r$ is a regular sequence in $R$ by Algebra, Lemma 10.68.5. $\square$


Comments (3)

Comment #8288 by Zongzhu Lin on

I might be missing something on the relations between and in 23.7.1-23.7.3. With the condition that is the annihlator in of and , it seems that it is assumed that is an -algebra, i.e., . But the usage of the results in the proof of 23.7.4 does not suggest .

It seems that is the image of in , am I correct? With replaced by , the statements and the proof might make sense (with a few places of -linear to replaced by -linear).

Comment #8290 by on

Look, there is a typo in the proof of the first lemma and it should be and not the other way around. I will fix this the next time I go through all the comments.

About the annihilator of what you say is correct. Here is an often used abuse of language: if is a ring with a square zero ideal , then has a unique structure of a module over which "agrees" with the -module structure on (this means exactly what you think it means). This works more generally for any -module such that .

Thus when we say in the statement of the first lemma: " is the annihilator of in " this is the module structure on we are using.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09PR. Beware of the difference between the letter 'O' and the digit '0'.