Lemma 12.3.10. Let $\mathcal{C}$ be a preadditive category. Let $x \oplus y$ with morphisms $i, j, p, q$ as in Lemma 12.3.4 be a direct sum in $\mathcal{C}$. Then $i : x \to x \oplus y$ is a kernel of $q : x \oplus y \rightarrow y$. Dually, $p$ is a cokernel for $j$.

**Proof.**
Let $f : z' \to x \oplus y$ be a morphism such that $q \circ f = 0$. We have to show that there exists a unique morphism $g : z' \to x$ such that $f = i \circ g$. Since $i \circ p + j \circ q$ is the identity on $x \oplus y$ we see that

and hence $g = p \circ f$ works. Uniqueness holds because $p \circ i$ is the identity on $x$. The proof of the second statement is dual. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: