Lemma 22.37.2. Let $R$ be a ring. Let $(A, \text{d})$ and $(B, \text{d})$ be differential graded algebras over $R$. Let $N$ be a differential graded $(A, B)$-bimodule. Assume that
$N$ defines a compact object of $D(B, \text{d})$,
if $N' \in D(B, \text{d})$ and $\mathop{\mathrm{Hom}}\nolimits _{D(B, \text{d})}(N, N'[n]) = 0$ for $n \in \mathbf{Z}$, then $N' = 0$, and
the map $H^ k(A) \to \mathop{\mathrm{Hom}}\nolimits _{D(B, \text{d})}(N, N[k])$ is an isomorphism for all $k \in \mathbf{Z}$.
Then
gives an $R$-linear equivalence of triangulated categories.
Comments (0)