Lemma 20.12.4. Let (X, \mathcal{O}_ X) be a ringed space. Let \mathcal{F} be a sheaf of \mathcal{O}_ X-modules. Let \mathcal{U} : U = \bigcup U_ i be an open covering. If \mathcal{F} is flasque, then \check{H}^ p(\mathcal{U}, \mathcal{F}) = 0 for p > 0.
Proof. The presheaves \underline{H}^ q(\mathcal{F}) used in the statement of Lemma 20.11.5 are zero by Lemma 20.12.3. Hence \check{H}^ p(U, \mathcal{F}) = H^ p(U, \mathcal{F}) = 0 by Lemma 20.12.3 again. \square
Comments (0)
There are also: