Lemma 20.12.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. Let $\mathcal{U} : U = \bigcup U_ i$ be an open covering. If $\mathcal{F}$ is flasque, then $\check{H}^ p(\mathcal{U}, \mathcal{F}) = 0$ for $p > 0$.

**Proof.**
The presheaves $\underline{H}^ q(\mathcal{F})$ used in the statement of Lemma 20.11.5 are zero by Lemma 20.12.3. Hence $\check{H}^ p(U, \mathcal{F}) = H^ p(U, \mathcal{F}) = 0$ by Lemma 20.12.3 again.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: