Lemma 20.48.5. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $E$ be an object of $D(\mathcal{O}_ X)$. Let $a, b \in \mathbf{Z}$ with $a \leq b$. The following are equivalent

1. $E$ has tor-amplitude in $[a, b]$.

2. for every $x \in X$ the object $E_ x$ of $D(\mathcal{O}_{X, x})$ has tor-amplitude in $[a, b]$.

Proof. Taking stalks at $x$ is the same thing as pulling back by the morphism of ringed spaces $(x, \mathcal{O}_{X, x}) \to (X, \mathcal{O}_ X)$. Hence the implication (1) $\Rightarrow$ (2) follows from Lemma 20.48.4. For the converse, note that taking stalks commutes with tensor products (Modules, Lemma 17.16.1). Hence

$(E \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{F})_ x = E_ x \otimes _{\mathcal{O}_{X, x}}^\mathbf {L} \mathcal{F}_ x$

On the other hand, taking stalks is exact, so

$H^ i(E \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{F})_ x = H^ i((E \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{F})_ x) = H^ i(E_ x \otimes _{\mathcal{O}_{X, x}}^\mathbf {L} \mathcal{F}_ x)$

and we can check whether $H^ i(E \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{F})$ is zero by checking whether all of its stalks are zero (Modules, Lemma 17.3.1). Thus (2) implies (1). $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).