Lemma 37.56.10. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $(E, E', E'')$ be a distinguished triangle of $D(\mathcal{O}_ X)$. Let $m \in \mathbf{Z}$.

1. If $E$ is $(m + 1)$-pseudo-coherent relative to $S$ and $E'$ is $m$-pseudo-coherent relative to $S$ then $E''$ is $m$-pseudo-coherent relative to $S$.

2. If $E, E''$ are $m$-pseudo-coherent relative to $S$, then $E'$ is $m$-pseudo-coherent relative to $S$.

3. If $E'$ is $(m + 1)$-pseudo-coherent relative to $S$ and $E''$ is $m$-pseudo-coherent relative to $S$, then $E$ is $(m + 1)$-pseudo-coherent relative to $S$.

Moreover, if two out of three of $E, E', E''$ are pseudo-coherent relative to $S$, the so is the third.

Proof. Immediate from Lemma 37.56.6 and Cohomology, Lemma 20.44.4. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09UL. Beware of the difference between the letter 'O' and the digit '0'.